
7 AO-A95 554 44IO STATE UNIV COLUMBUS ELECTROSCIENCE LAB F/S 20/14
ELECTROMAGNETIC SCATTERING BY OPEN CIRCULAR WAVEGIDES.IU)
DEC 80 T B JOHNSON, 0 L MOFFATT NOOOl-78-C-009

CLASSIFIED ESL-710816-9 L-20000lll00I i *
-Eu'-.--ll
!IIIIIi__

-mm---~i



LEW
S ELECTROMAGNETIC SCATTERING BY OPEN CIRCULAR WAVEGUIDES

T. W. Johnson
0. L. Moffatt

The Ohio State University

The Ohio State University

ElectroScience Laboratory
Department of Electrical Engineering e-.:) 7-

Columbus, Ohio 43212

TECHNICAL REPORT 710816-9 '

Contract N00014-78-C-0049 V

December 1980

Dept. of the Navy
Office of Naval Research

a" Arlington, Virginia 22217

DISTRIBUTION STATtMENT A

Approved for public release;
DIOtLbutlon Unhrafted

8.. .1i27i.. ..



2

NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated, o.
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

0.



e SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DOCUMENTATION PAGE READ INSTRUCTIONSREPORT BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

.' 4. TITLE (amd Subiltle) " OF REPr-r 6 , LRI>, ClIVERED(1 rechnica] RerjortL jLECTROMAGNETIC SCATTERING BY OPEN
IRCULAR WAVEGUDESa,

'4. PLREBMIN-G (,RG. REORT NUMBER

- " k'r ESL-7 10816-9
/-n7."., 0 . f. T AU HO.@ 9ANT NUMBER(&)

ST. W./!Johnson ', '" .. . ... ...
. L./Moffatt Contract; N00014-78-C-0049

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

AREA & WORK UNIT NUMBERS

The Ohio State University ElectroScience
Laboratory, Department of Electrical Engineering,
Columbus, Ohio 43212

II. CONTROLLING OFFICE NAME AND ADDRESS /-, 12. REPORT DATE

Dept. of the Navy, Office of Naval Research, '< December 1080'
800 Quincy Street I,. NUMBER O6PVES-

Arlington, VA 22217 119
14. MONITORING AGENCY NAME & ADD%&9VI different from Controlling Office) IS. SECURITY CLASS. (of this report)

..... Unclassified

- IS.. DECLASSIFICATION'DOWNGRADING~SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report) ,

I8 SUPPLEMENTARY NOTES

The material contained in this report is also used as a dissertation
submitted to the Department of Electrical Engineering, The Ohio State
University as partial fulfillment for the degree Doctor of Philosophy.

19 KEY WORDS (Continue on reverse oide if necessary end Identify by block number)

Intake Wiener-Hopf
Enqine Electromagnetic
Circular Scattering
Wavequide

20 ABSTRACT (Continue on reverse side It neceee ry and Identify by block number)

Open circular waveguides are used to model jet engine inlets.
The exact Wiener-Hopf solution for scattering by a semi-infinite cylinder
is studied in the resonance region, where the cylinder diameter is
of the order of a wavelength. In particular, the Wiener-Hopf factori-
zation functions are calculated by numerical integration and compared
to various approximations, to define regions of validity. Scattering
from the rim is studied as a function of frequency, incidence angle,

DD AJN7 3 1473 EDITION OF I NOV 65 IS OBSOLETE

'r " ' PITYCLASSIFICATION ,.OIPAE(%nroaE.i



SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered

20.

\land time. A ray-optic model for rim backscatter is discussed. The
relative power absorption of the five lowest order waveguide modes
is evaluated. Coupling of incident plane waves to waveguide modes,
and radiation by these modes are shown to be related by reciprocity.

The waveguide termination model for a jet engine assumes an inci-
dent waveguide mode strikes an axially symmetric cone on a flat plate.
The various techniques for evaluating scattering by this structure
are discussed, and the problem is solved for a few cases.,

1
SECURITrY CLASSIFICATION OF THIS PAGE(??,en Data Entered,



FOREWORD

The radar cross sections of modern aircraft and aerospace vehicles
are greatly influenced by the jet engine configurations. However,
the prediction and interpretation of electromagnetic wave interactions
with open cavities housing realistic jet engine configurations presents
a perverse challenge to the electromagnetic theorist. No single study
can possibly address all aspects of the problem. While some approximate
low and high frequency results are also given, emphasis in this report
is concentrated over a frequency span where the cavity aperture is
of resonant dimensions, on a circular aperture and on an approach to
reasonably realistic engine models.

T. W. Johnson is a Captain in the United States Air Force and
attended the Ohio State University under the Air Force Institute of
Technology's Civilian Institution Program. Some of the material in
this report was also used as a dissertation submitted to the Department
of Electrical Engineering, the Ohio State University as partial fulfill-
ment of requirements for the degree Doctor of Philosophy. Computational
funding was provided by the Department of Electrical Engineering.
The results were felt to be of sufficient interest to warrant report
publication and report preparation funding was provided by the Joint
Services Electronics Program.
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CHAPTER I
INTRODUCTION

The radar cross section (RCS) of jet intakes has been extens-
ively studied. There are several reasons that it is of interest.
One is simply that it is a major element in the radar cross section
of aircraft and must be accurately evaluated to estimate total air-
craft RCS. Another reason for study is that potentially the RCS
of the aircraft could possibly be reduced if the scattering mech-
anisms are well understood. A third (though certainly not final)
reason is that many aircraft identification or classification tech-
niques propose to use modulation of the radar return imposed by tile
aircraft engine as a significant identifiable feature. It would
be a questionable approach to establish such a system on an effect
which is not well understood, particularly in terms of establishing
the system's susceptibility to intentional confusion or camouflage.

This study is somewhat limited to the region for which DrX;
the asymptotic forms developed for higher frequencies may fail in
this region, and the very low frequency techniques (for which little
or no energy penetrates the intake) are invalid.

This study develops two of the practical problems involved
in calculating the RCS. The coupling coefficients at the mouth of
the intake are known in principle, but difficult to compute in prac-
tice. The effect of the engine structure is known only generally,
and has been very loosely approximated in past studies.

The jet intake can generally be modeled as an open ended wave-
guide with an obstacle (the engine) some distance down the waveguide.
Figure 1-1 illustrates the geometry. The problem can then, in
principle, be solved by the generalized scattering matrix technique.
The scattering matrices of the significant scatterers, if known,
can be self-consistently manipulated to produce the backscattered
field. Let

i
u represent the incident field,

u bs the backscattered field,

[S11] : a matrix, representing (in some sense) the direct
backscatter of the open waveguide
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I
$121 radiation characteristics of waveguide modes

[$2,1 : coup] inq natrix of incident field to waveguide modes

2S J reflection of waveguide modes from the open end

Sb ] reflection of waveguide modes from the obstacle

IT 2b] transmission down waveguide

E Tb2l transmission back from waveguide to aperture.

Note that off-diagonal terms in each transmission and reflection
matrix will represent mode conversion from one mode to another.

From Fiqure 1-1 we can easily show that:

1 S fu + S12r2  (1-1)

r Sl U 21  
+ S??r 2  (1-2)

r T2  T b? Sb T ? rI  (1-3)

r2  Tb2 Sb T2b (S?]ui + S2 2r2) (1-4)

[ I-Th2SbTbS?2 r 2 Tb2 SbT2 bS 2 1u (1-5)

[(Tb 2Sb T2b
)- - S22]r2 = S2 1ui (1-6)

r2  r(Tb2SbTb)-1- S2 2] $21u 1-7)

(S1 1 Sl2 [(Tb2SbT2b ) - - S 2]1  S2 1 ui (-

The matrice S , S, S and S22 have been solved for by the Wiener-
Hopf technique. I Th~e rlults aro quite complicated algebraically,
The heart of the problem, however, is calculation of the Wiener-Hopf
factorization functions. Considerable effort has been given to cal-
culating these functions, which is presented in Appendix A. This
study has emphasized circular waveguides, because much prior work
has been done in the area, and the symmetry of the geometry simplifies
the problem somewhat. Also, since engine geometries are circular,
non-circular inlets require an additional model of the mode conver-
sion as the energy travels down a waveguide of varying cross-section.
Thus our matrices T and T are diagonal, having only the relevant
phase delay for eack mode. TYhis study does not address further
development of this effect for non-uniform waveguides.

3



Summdry of Circular Waveguide Modes

Propagation in a circular waveguide is limited to a discrete
set of modes, which can propagate only for waveguide diameters larger
than a certain minimum (cutoff) diameter. The notation used in this
study is consistent with Harrington: TEll refers to u mode with
electric field transverse to the axis of propagation. In the Russian
literature (Weinstein) this is referred to as a magnetic mode, since
it has a z-directed magnetic field, and all other field components
can be simply derived from it.

The number of modes that can propagate in a circular waveguide
(lo s rouqhly as the square of the diameter. Table 1-1 lists the fi-st

TABLE 1-1

SUMMARY OF LOW-ORDER (IRCIJLAR WAVEGUIDE
MODES AND CUTOFF FREQUENCIES

Mode cutoff cutoff ka

TEll .5861 1.8412
TMOI .7655 2.4048
TE21 .9722 3.0542
TM11 1.2197 3.8317
TEOI 1.2197 3.8317
TE31 1.3373 4.2012
TMl 1.6347 5.1356
TE41 1.6926 5.3176
TEl? 1.6970 5.3314
TMO? 1.75/1 5.5201
TMJI ?.0309 6.3802
TLI[ ?.0421 6.4156
F?? ?.1346 6.7061
F(O? ?. 23 3 1 7.01 6

TM;? ?.?331 7.(IF56
TribI 2.3877 7.5013
TM41 2.4154 7.5883
TE3? 2.5513 8.0152
TM2? ?.6793 8.4172
TEl3 2.7172 8.5363
TE7J 2.7304 8.5778
TM03 2.7546 8.6537
TM51 2.7921 8.7715
TE4? 2.9547 9.2824
TE81 3.0709 9.6474
TM3? 3.1070 9.7610
TM61 3.1628 9.9361
TE23 3.1734 9.9695

4
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I
28 modes in order of increasing cutoff diameter. The cutoff is cal-
culated by noting the J n(Jnm )=O or Jn(j'' )=O and then ka=j or

n m D n

Since ka 2 - the cutoff in terms of ka can be simply

dorived. It seems more intuitive to discuss D/X. Figure 1-3 presents
.,l,,ctric fild lino pictures for the first few modes.

ThiI , study employs the eit time convention; the choice is
necessary for consistency with the vast majority of Weiner-Hopf
literature (Einarsson et al). The coordinate system chosen will
be standard spherical and/or cylindrical coordinates, with the
origin at the center of the waveguide mouth. See Figure 1-2. The
polar angle is ', the azimuthal angle 4. The radius will be desig-
nated by r, in spherical coordinates, and p in cylindrical coordin-
ates. The waveguide radius is a, and the waveguide extends from
z=O to z=-- at p=a.

Since a large part of the literature is concerned with the
Weiner-Hopf solution to scattering by a semi-infinite circular
cylinder, an heuristic description will be presented here. Tutorial
discussions of the Weiner-Hopf technique can be found in [Noble (1958)1
and [Morse and Feshback (1953)1.

The Weiner-Hopf technique is based on the fact that the Fourier
transform of a causal function is entire in a half plane. For example,
the function

x(t) e-t t >o

LO t < 0 (1-9)

has the Fourier transform

X(W) = f e1  e-(t u(t) dt = f e - L)t dt
-M 0

1 e- ol e_
I e- [JC - ej 0 = 1i. (1-10)

-ot- i

[Recall that we are using e time dependence]. Hence X(w) has
a single pole at w - - ia and is entire (has no poles) for Im(w)>O>-icx.
In the Weiner-Hopf technique, the Fourier transform of the field
component is taken with respect to the coordinate along one axis
of the problem (the axis parallel to the semi-infinite object).
The incident and scattered field are then related by means of the

Lk ~ ~5 i
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Figure 1-2. Coordinate system for modeling engine inlet.
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TEO, I TE 0,2 TE 0,3

TE 1,1 TE 1,2 TE 1,3

0::2

TE 2,1 TE 2,2 TE 2,3

Figure 1-3. Electric field lines for TE modes
in circular waveguide.
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TM 0,1 TM 0,2

(0>))
TM 1,1 TM 1,2

TM 2,1 TM 2,2

Figure 1-3 (continued). Electric field lines for
TM modes in circular waveguide.
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lphy1 'ics of the prohlem. Nole cites three different technique,;
for doinq lhis: field matching, Green's function integral equation,
and dual integral equations. The resultant equation is manipulated
so that the left-hand side must be entire in one half-plane and the
right-hand side in the other half-plane, with a region of overlap.
These are then equated to a third function, which must be entire
over the whole O-plane. Because of Liouville's Theorem, this new
function ends up being a constant, equal to zero. This separately
sets each side of the equation to zero, which leads to the solution
(by taking the inverse Fourier transform).

For the cylinder scattering problem, the incident field is
decomposed into cylinder waves by the Bessel function addition
theorem. The transform is taken with respect to the z-axis:

r(c,r,) f E(z,r,)e -laz dz (I-1I)

For each cylinder wave, the incident and scattered fields are related
)y iiipw. iri(i O oh unlary c,)nrl(itions that the tanqerti ,l (,( tri
field must vanish at the cylinder walls, and the surface current
must vanish in free space. These are used to manipulate the problem
into a Weiner-Hopf form. This process is described by [WPInst-in
(1969) and Einarsson et al (1966)].

The analysis of interactions at the mouth of an open waveguide
goes back to [Chu (1940)]. By using the Kirchoff approximation the
radiation fields for the lowest order propagating modes for a cir-
cular, and a rectangular waveguide are calculated. In terms of the
GSMT, this would enable us to compute elements of [S1 2].

[Levine and Schwinger (1948)ievaluate the acoustic radiation
and reflection characteristics of a hollow circular pipe. An
integral equation for the velocity potential is solved via the Weiner-
Hopf technique. Their study is confined to symmetrical modes incident
on the open end of the pipe. In a circular acoustic waveguide,
the symmetrical modes are given by

O(p,@) = Jo(Jom p/a) or Jo(jo'p/a) (1-12)

where

jom are the zeroes of J0 (X)

jom are the zeroes of J4 (x)

9
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[Pearson (1953)1 wa'; the first to apply the Weiner-Hopf technique
t) the electrmagnoti ic probloim. He considers a transverse magnetic
pl mi wave inc ident on th(, open end, and obtains equations for the
l-apl ace trancs f orns of the ax i ,I n d azimuthal currents on the wavegu ide
wal Is. These equations are then solved by the Weiner-Hopf techniques,
and the currents can be obtained by inverse Laplace transform. The
fields far from the mouth down the pipe are then evaluated asymp-
totically and found to result from propagating modes, thus giving
the coupling coefficients. The backscattered fields are not evalu-
ated, nor is the behavior near the mouth studied.

[Jones (1955)] analyzes the scattering of sound waves by a
solid semi-infinite cylinder. He considers both hard and soft boundary
conditions although numerical results are evaluated for only the
hard (du/dn=O) case. An approximation for high frequency (large
diameter) is developed, and a low frequency expression is presented.
A variational expression is developed to establish limits of error
on the approximations used in evaluating the exact expressions.
Both the pressure field on the cylinder, and the scattered far field
are evaluated. The end cap pressure time response due to an incident
unit step is evaluated by taking the inverse Laplace transform of
the frequency domain response.

[Nobh1 e (1958)] treat s the sca 1 ar proh I em for I)ot.h radi at ion of
the Iowest. order mode, and ('.upling of an incident plane wave tn
the lowest order mode in a circular waveguide. His discussion is
tutorial in nature, drawing somewhat from Jones' work. There is
a more complete treatment of the general technique used to solve
Weiner-Hopf problems than is found in most other references.

[Jones (1964)] applies the Weiner-Hopf technique to radiation
from a semi-infinite hollow pipe. This study is somewhat tutorial
in nature, being part of a textbook, and considers only a few of
the lowest order modes. Jones notes that TE modes radiate more
efficiently than TM modes. TM modes have higher reflection coef-
ficients at the open end of the pipe.

[Einarsson et al (1966)1 give an exhaustive study of diffraction
by both the infinite and semi-infinite circular cylinder. The back-
s, tter for a plane electromagnetic wave incident on a solid, semi-
infinite, perfectly conducting rod is given. The scalar (sound)
scattering from a semi-infinite (both solid and thin walled) tube
is evaluated. The radiation and reflection for a propagating scalar
wave incident on an open end are evaluated (reproducing the results
of Levine and Schuinger and also Weinstein). There is a brief dis-
cussion of finite cylindrical resonators with one end open, one end
closed (rigid, Dirchlet boundarY condition).

10
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The general solution for scattering of a plane electromagnetic

wave from a semi-infinite thin walled, perfectly conducting tube
occupies about half the report. This includes both the backscatter
far-field [Sll] and coupling coefficients, for the general plane
wave (neither TE nor TM). The special case of axial incidence is
considered. Radiation from a source inside the tube [S211 and re-
flection from an open end [$2 1, are evaluated, largely copied from
Weinstein. Asymptotic radiation of the far-fields is compared to
the Kirchoff approximation.

A substantial part of this study concerns evaulation of the
Weiner-Hopf factorization functions. A number of forms of integral
expressions which exactly define them are developed. Power series
approximations to the low frequency are developed. Unfortunately
these expressions are still quite complex.

In addition, only the magnitude of the functions is approxi-
mated; the phase is not. A large effort to develop high frequency
approximation yields some useful simplifications, but the results
are expressed in terms of another unknown function, albeit much
simpler. Numerical data is given for varying values of ka with the a
parameter fixed. This,is inconvenient since, generally, c=kcosO,
and we are primarily interested in fixing ka and varying a. Experi-
mental data are presented for finite cylinders. No experimental
data are presented for a semi-infinite cylinder.

[Witt and Price (1968)] analyze the problem of a finite tuhe
without recourse to Weiner-Hopf techniques. Instead, the direct.
hackscatter from the rim, and the coupling coefficients to wavyjuid
modes are calculated by what amounts to the Kirchoff approximation.
The incident field tangential to the aperture is expanded as a sum
of waveguide modes, and a waveguide admittance for each mode is com-
puted. The reradiation is also calculated via the Kirchoff method,
using the Stratton-Chu integral. The termination is modeled as an
impedance, which results in a simple (scalar) reflection coefficient.
The reflection coefficient is then transformed to its equivalent
impedance as seen at the mouth of the waveguide. The total waveguide
admittance for that mode is then calculated, and the scattered field
is expressed as a sum over the waveguide modes, times the incident
field projection on that mode, times the generalized admittance.

For backscatter with vertical polarization (TE) (which corres-
ponds to our polarization) they present the formula

jka 2cosO -jkrEy(s x',O,z') -

y r

(Vl(v+vo) + Y Y E (v)E (V)(l+rn) ( ! 7nm s
o o n=O m=l nm '.
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where

vo = kasinO °  (incident)
0

v = kasinO (scattered)

E = weighting coefficient for nm-th modenm

'Ynm = propagation coefficient for nm-th mode

rnm = reflection coefficient seen at aperture for nm-th mode.

The work of Weinstein* in many cases predates the works reviewed
here. However, most of Weinsteins's papers were published in Russian
journals. His book [Weinstein (1969)] contains virtually all of
hi', earlier work, and is readily available. It should simply be
noted that Weinstein's work (lid frequently predate work in the West.

[Weinstein (1q69)] has collected all of his earlier work on the
Wiener-Hopf technique into a single volume. The book is tutorial
in nature, beginning with the simplest problem, diffraction and
radiation by a plane parallel plate waveguide. Having developed
the basic Wiener-Hopf arguments, he proceeds to analyze circular
waveguides, first considering only symmetrical modes (to eliminate

azimuthal dependence from the problem). Acoustical problems are
then solved, followed by the general problem for electromagnetic
waves scattered and radiated b Y a semi-infinite circular cylinder,
including azimuthal dependence. Comparisons with answers obtained
via the Kirchoff method are frequent, showing those circumstances
under which the Kirchoff method works and those under which it fails.
There is a suhstantial discussion of the relative accuracy of Huygens
principle, compared with edge diffraction; a substantial point is
made that edge diffraction yields more reliahle answers.

[Kao (IT7()1 pre,;ents a completely novel approach to scatterinq
froim cyl in der,. le deter mines the currents on fi i te cyl inders bv
r'.inq point matching and then calculates radiation patterns from
the currents. For the semi-infinite cylinder [1970b] he sets up
two sets of points with slightly different interpoint spacing. By
various manipulations of these, he determines the magnitude of the
traveling wave launched on the cylinder by the incident plane wave,
as well as the current in the vicinity of the apertur8 . However,
hi', analysis is confined to broadside incidence (0-90 ).

[Bowman (1970)] develops ray-optical diffraction expressions
for, the scattering from the end (aperture) of the semi-infinite wave-
quid-, and compares these with &n asymptotic approximation to the

t.'1r:, i ,,s Vajinshtei.in, Wainstoin, Vainsht.eir.
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I
Woiner-llopf solutions. For the asymptotic form of the Wiener-

lhipf %,lul. ion, he obtains, for direct backscatter (0=0)

kr ei/4 -3/2  i2mka
[S - 2r e I + e I m= m e (1-14)

1 ,fk m=l

whoreas hy ray optical methods, he obtains

BS a ikr r e i T/4 00 -im ei2mka

EU _ e 1 + 1 (1-15)
- - m l 2

For bistatic scattering with axial incidence he obtains from approxi-
mating the Wiener-Hopf solution letting his 0 go to ir-O and his ¢
to 2Tt-¢

ikr 2a >1/2 cos(kasinO-_t/4)sincq)
ES '" + $ k O cos(O/2)

r'd~ Trksine)co6/

+e i/ 4  cos2 (/2) f im m -3/2 ei2mka (1-16)

+K cosO m=i )

From the ray optical approximation he obtains

e + ,ikr /2a /2 cos(kasine-r/4) sine
r ks-ne, cos012

{+ ei/4 cos2 (0/2 im ei2mka1
1 ecosO m=1 m - .(1-17)

112)
In both cases it is seen that the term of O(ka- is identical
up to the first two terms in the summation

iei2ka i2e4 ika i3e i6ka--T -+  1 e + -- e (1-18a)
2_3/2 33/2

vs

i2ka .2 i4ka .3 i6ka
ie - -/ + ie (1-18b)

_ 23/2 +



He 1ttri;)utes this difference to the ray-optical approach, for which
he first considered scattering by plane parallel plates; multiple
scattering was effected by assuming a cylinder wave was generated
from each edge after scattering. This result was then specialized
to having a single point participate in the scattering on each edge
but not modified to take account of the fact that a cylindrical wave
is no longer being emanated from each edge. Beyond this comment,
Bowman does not analyze further, since the exact result from the
Weiner-Hopf solution instructs us how to modify the ray-optic con-
tribution.

A comparison of Bowman's results with those of Witt and Price
is illuminating. If we restrict ourselves to on-axis backscatter
and disregard terms due to reflection from the termination, the
formula presented by Witt and Price reduces to

jka e-jkr 1 + v 2

as e kr + / E (v)?
r n2O Enm(-1n=O m=l

= -jka a e- jkr I E (v 21 19
2-r + n 0 1Enm( 2 ,(-9

We observe that, besides the opposite time convention, there is an
additional factor of jka present in the form presented by Witt and
Price. They remark that this is recognizable as the physical optics
approximation for scattering from a flat conducting disk. Since
this is not in agreement with the high frequency behavior of the
Weiner-Hopf solution, we conclude that the disk is not a good high
frequency model for this problem. In fact, it will be seen later
that the disk does adequately model the on-axis scattering of a
cyl inder terminated by a perfectly conducting plate.

[Moll and Seecamp (1970)] present a more realistic model of
the engine geometry. The approach of Witt and Price is used to model
the scattering, coupling, and radiation at the duct inlet. The study
is confined to TE modes. The termination, however is modeled by
two sets of blades, each as shown in Figure 1-4, to simulate the
first stage of a compressor. The blades are modeled as being planar
(normal to the z axis). The two sets of blades had different numbers
of blades and blade widths and assumed varying relative orientations
(stator to rotor). The scattering at the termination is modeled
by a similar procedure to that at the inlet. The backscattered field
i-; expressed as a sum of modes traveling toward the mouth. The total
tangential electric fields must match at points where there are
blades. For each incident mode, integrals were taken over the area
covered by either set of blades, forcing the fields to vanish.
The equations thus obtained are used to solve for the scattering
coefficients for modes generated at the termination. Then, the

14
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Figure 1-4. Planar engine model used by Moll and Seacamp.
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radiation from each mode is computed by matching the radiated field
plus the incident field to the internal field at the duct aperture,
where the internal field is the sum of the modes traveling down the
waveguide plus those scattered back by the termination. The RCS
is computed for various orientation of the blade structure and various
relative orientations of the two bladed structures, giving a range
of modulation of the RCS caused by the rotor motion. They used 31
and 37 blades on the respective blade structures. There is a brief
discussion of a non-planar cap in the duct termination, but the idea
is not developed.

[Lee et al (1973)1 are primarily concerned with the measurement
errors made when field strength is measured with a sensor boom.
The effect of the presence of the boom is analyzed via the Wiener-
Hlopf technique, and the relative distortion thus introduced is cal-
culated. The relevant part of this paper deals with the calculation
of the Wiener-Hopf factorization functions. Although the general
factorization expression is developed (as an infinite product of
factors), the general expression is clearly too complex to be useful.
A low frequency form is developed for the n=l case for both L+ and
M+ functions. The n=l case is relevant to low frequencies because
the TEll mode has the lowest cutoff frequency, hence is also the
slowest decaying evanescent mode when all modes are cut off. Un-
fortunately the low frequency expression presented do not appear
to fit very well with data computed in this dissertation by numerical
integration of the exact integral defining the functions.
(Lee et al) indicate a constant phase for the low frequency, but
it appears that the phase varies rather rapidly as the frequency
increases from D.C. The formulas do work out to the correct "DC"
form.

[Mittra et al (1974)] present a detailed report which includes
reconciliation of the numerical solution with experimental data.
The complete Wiener-Hopf solution for the semi-infinite cylinder
i'; presented. There appear to be some errors in the results presented,
since the scattering coefficients for direct backscatter (Equation
(3-86)) could not be reconciled with those presented by [Bowman (1970)1;
also the two direct polarization solutions for Soo and S do not
reduce to the same answer on axis, nor do they reduce to the answer
given by [Effirsson ot al(1966)] for on axis backscatter (Equation
(5-63)). The solution for large pipes is simplified by an asymp-
totic approximation for the L+ and M+ functions; these are expressed
as functions of the series

' m 312 eim(2ka - nn+7/2) (1-20)
w=l1

and the same summation, including either even terms or odd terms.
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The Generalized Scattering Matrix Technique (GSMT) is used
to formulate the problem. Considerable effort is expended expressing
the individual elements of the matrix in terms of the Wiener-Hopf
solut ion.

Solutions for other geometries are developed bv the ray-optica'
method. The geometries considered are an ellipsoid, elliptical plte,
and semi-infinite elliptical cylinder. The semi-infinite elliptical
rylinder i- analyzed in terms of diffraction hy the edge of the

yl in(er.

The,, ';)olut ions are then combined to estimate the total RL
t n an ai rcroft. Numerical results were computed for selected fIKe(
frequencies for two aircraft. For calculations involving a termination
in the jet intake, this was modeled earlier as a perfect conductor,
or as a dielectric plug of infinite depth, or as a dielectric plug
of finite depth.

[Chuang et al (1975)] present an extension of the report by
[Mittra et al (1973)]. Starting with the exact solution for bistatic
scattering from a semi-infinite pipe, they develop approximate high
frequency expressions for the factorization function, based on an
asymptotic evaluation of the integral defining these functions.
Both factorization functions can be rather simply expressed in terms
of a third function, called a modified Lerch function of order 3/2,

Cn

L(x,v) = y m-v e i2nmx (1-21)
m= 1

They then derive via the Mellin transformation a twelve-term series
representation with complex coefficients, which enables the compu-
tation of this function for v = 3/2 to be mechanized trivially.
The results thus obtained show excellent agreement with results ob-
tained by direct numerical integration of the defining integral,
down to the cutoff frequency of the lowest mode of that order. Finally
there is a simplification of the infinite sum which is present in
the scattering calculation mode by use of the asymptotic form with
one of the Bessel function addition theorems.

There appear to be a few errors in this paper. These are summar-
ized in Appendix B.

[James and Greene (1978)1 indicate that both theoretical and
experimental results show substantial sensitivity to wall thickness.
They indicate that the exact Wiener-Hopf solution based on infinitely
thin walls breaks down when the wall thickness is larger than .OIX.
The results of their summary seems to be that the radiation patterns
of thick walled pipes are narrower than given by the Wiener-Hopf
solution. Beyond noting this effect, we will not further discuss
this problem, since it would require an entirely separate study.
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CHAPTER II
DISCUSSION OF WIENER-HOPF SOLUTION

The exact Wiener-Hopf solution to the diffraction by a semi-
infinite circular waveguide can be found in [Einarsson et al (1966)1.
The significant formulas from this report are summarized in Appendix
B. The major numerical problem -- that of calculating the factori-
zation functions -- is discussed at length in Appendix A. This chapter
discusses the physical jignificance of some of these formulas. We
reiterate that the e- 1t time dependence is assumed and suppressed.

The coordinate system is a substantial stumbling block since
the incident and scattered field are defined with respect to 0 and
unit vectors which are themselves functions of angle. Further com-
plicating matters, [Einarsson et al (1966)] and [Mittra et al (1974)1
us, different coordinate systems. This study uses the coordinate
system illustrated in Figure 2-1, which is the same as [Mittra et
al (1974)1, since it forms a self-consistant reference for scattering
calculations.

The incident field is assumed to come from the angle i=Tr.
Looking in along the y-axis toward the origin, we see Figure 2-2.
Looking in along the x-axis toward the origin we see Figure 2-3.
Hence we obtain the following unit vectors.

= - x cose i  - z sine i  (2-1a)

(2-1b)

For the scattered field, we are not necessarily constrained to S=
(for bistatic scattering). Hence, we obtain general formulas for
the unit vectors.

= x coso S cos4s + y coso s sines - z sine (2-2a)

= - x sin~s + y coss (2-2b)

In our coordinate system, the incident and scattered fields are in
the same coordinate system. In [Einarsson et al (1966)], the direction
of the z-axis is reversed, but 0i and the unit vectors for the inci-
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Figure 2-1. Coordinate system for Wiener-Hopf solution
to semi-infinite cylinder.

19

A



A

Figure 2-2. Coordinate system looking at origin from
positive Y-axis.

z
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Figure ?-3. Coordinate system looking at origin from
positive X-axis.
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dent. field are def ined in ,uch a way that they physically point in

the ame direct ion av. in our -,ystemn. Thus cos) i , sino., I , t '

,11I the lame in [ inir' ,, )in's ind our coordinate systens. ( See F i gure

2-? in Einarsson; E occurs for B=O, E for R = 1 with l being re-2
placed by . ). In the scattered coordinate systems, 6 and $ are
reversed in sign (hence also EO and E ), and coso has the opposite
sign, but sinO is unchanged. In addition t is eplaced by - ssince the x-ax~s is the same in the two systems.

A. On-axis Results

The most elementary case of the Wiener-Hopf solution can be
found by taking the limit as 0-0. In taking this limit we will
consider both the backscatter and coupling of energy into the wave-
guide.

Taking the limit of Equation (B,3) (which gives the general
bistatic scattering from the rim for 0 incident and scattered
fields) with s=in, 0i=OS 6 (in the limit 6-0) we obtain

Soo I lir--- Y C n(-l) 2 2 f 2  (?-3)

600 n=O 62_L+(k) 1f n

where

En = Neumann epsilon = l;n=O

= 2;ntO

Jn() is the cylindrical bessel function of the first kind

k is the wavenumber = 2T

a is the pipe radius.

L+, M+ are the factorization functions; these are functions
of (na,k); k is always understood and n is usually
obvious from the context. Hence the only argument that
is explicitly given is a. L+(k) means L+(n,a=k,k)

fn = nL+(k)/2kaM+(k)

n n

S lim -2i 2 )_n (ka (2-4a)60 U n-l 22n L+(k) 2 n/

2 1
- 2i 2 -l L (2-4b)

T4L(k)]2 1_f2

L j1



ia~k

2 2 ( nr I unders tood) (2- 4c)4k'a' M+ (k)?L+(k)?

since f is identically 0.

When combined with Equation (B-2), we obtain

Es e ikr -ia2k
- 4k2a2M+(k)L+(k)2 (n=l understood) (2-5)

This can be seen to be the same as Equation (5-163) of [iinarsson
(1966)1 with r)z; the same procedure applied to Sp, (which givesthe general bistatic scattering from the rim for , incident and scat-
tered fields) leads to exactly the same result.

[Jr(kaS)]2  f~ 2
mrn ?f C n(-l)n . ]---- + I?-6)

n (/ M+(k) % ( n

2i 2(-l) (12 + (2-6b)
(M+(k))

-1 2 (2-6c)
4kM+(k) (1-f1 )

-ia2k___
4k2a2 k 2 2 (n=l understood) (2-6d)

We see immediately from Equations (B-5) and (B-6) (which give
the cross-polarized backscatter) that sin nlT=O so no cross-polarized
field is generated.

The radar cross-section is defined by

2

(1 = lim 4ir 2  j (2-7)

Applying Equation (?-5), we obtain
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a= im 4 r 2  a2 k (2-8a)
r -c r (4k 2a2M+(k)2-L+(k)

2

= 4n a2k (2-8b)
-4k2a2M+(k)2-L+(k)2 (

= ?ak .. . 2..(?-9)
a2 4k~a2M (k)2-L+(k)2irak

The results of Equation (2-9) are evaluated and plotted in Figure
2-4. It is of interest to gote that the normalized cross-spctin
peaks at !/XAz.55, with oia'=10.4 dB, and then decreases very rapidly.
Thp lowest order propagating mode (TEll) is enabled at D/X=.5r8;
hence this peak occurs just below cutoff for this mode, and as the
mode is able to transport energy, the cross section rapidly decreases.
The first three peaks and corresponding modes are summarized in Table
?-1.

TABLE 2-1
SUMMARY OF ON-AXIS RCS PEAKS AND MODE ACTIVITY

Location of Height of Cutoff for Mode
peak (D/x) peak (dB) mode (D/X)

.55 10.4 .586 TEll

1.68 3.5 1.697 TEl2

2.69 2.5 2.717 TEl3

The rapid variation of cross section in these regions is related
to the strong coupling of the normally incident plane wave to the
TE Im modes, as discussed below.

rBowman (1970)] and [Chuang et al (1975)] use their asymptotic
forms for L+ and M+ to obtain a simple form for the on-axis cross
',,rt ion.

+i Y./4 00 i .1~ks 00n: Lu 1 -- n imm-l.S2mkaj (,2-18)

/Va n=l

This leads to
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I

S I + e i/4  .m -l.5ei2mka 12

vI k a vi= I

Equation (2-11) is plotted in Figure 2-5 and yields good results
for D/X>I.

Taking the inverse Fourier transform of Equation (2-5) with
the spatial dependence suppressed, we obtain the time domain response,
s.hown in Figure 2-6. This represents the backscattered field as a
time function resulting from a normally incident plane wave, impulsive
in time. This result was generated via the discrete Fourier trans-
form of the backscattered formula for O<D/X<3.2. Naturally the time
domain response is dominated by the peak at D/X=.55, which results
in damped oscillations. The time domain response can be related
(perhaps dubiously at low frequencies) to a ray optic model of scat-
toring at the mouth. The optic model was developed by [Bowman (1970)1.
For example, if we take the simplest asymptotic approximation for
the L+ and M+ functions, given by Equations (A-27), (A-29), (A-31),
(A-58) and (A-59), and substitute them into Equation (2-5), suppres-
sing the spatial decay and propagation,

E s  1 -4nia 2k (2-1 )

Ei  4 4k2a2M+(k)
2 L+(k) 2

retaining only terms of 0(1) and 0(ka- 1/2), with a unit incident
field

m i2m(ka-Tr/4) -i
-i/ 4  o (-) e

Es  --2 1 + e 3/2 (2-13

m2ml

s  -a ein/2(m+I/2) e c
E L n 1r V ia

1  (2-14)2 m = 3/2 21

Taking the first few terms of the summation explicitly

r , ~311 i2awita
I + Vr-f

ei T ~ ~ - - -5 i~ a(L i 7T i6a ,l)

-a c _ e + e e e e -
C

E 2 l+--L + + 1
L 

/]2 3 J
(-1
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i2 amw

Note that e c results in a time delay of 2am We employ the Fourier
C

transform pair

1 u(t) (2-16a)

and its Hilbert transform

i -U(-t) (?-16b)

Taking the transform of the frequency domain expression

Fi.2aw .4a , .6 aw

Ls - + c ((-l+i) e + 2vCVW e C -"+ ( i e/ C-

/W- 2V7vw 3V7 lw

(2-17)

leads to

E s(t) ~.-a L6(t) + 1/ uc-~- - 'c -

2a 2a

c c

u(t- 4a 4a t) u(t 6a ua

u(- t) _ ___
- + (+ + t

2v-2t - -a 2/-2/T- 7t 3/V7 -T 3/ 7~ t
c c c c

(2-18)

This is plotted in Figure 2-7.

note in Figure 2-6 that the sharp peaks at t-m.~We noei iue26ta h hr ek ttmLbecome
c

almost negligible after m=3, and the response sho,,n in the discrete
Fourier transform results seems to be dominated by the ringing as-
sociated with the lowest frequency resonance. Since this resonance
is not well predicted by the asymptotic forms (compare Figures 2-,
and ?-5) it is not surprising that the long-time or steady-state
response is not well predicted. This resonance appears to be related
to the currents excited at the mouth, and to some extent, associated
with an exterior natural resonance of the cylinder, since all the
waveguide modes are evanescent in this region.
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The coupling of an axially incident plane wave to waveguide
mrodes can be determined from a special case of equations (B-il) thru
(13-14) (which give the general coupling coefficients for incident
plane waves). Taking 0i-0 we see immediately that only n=l modes
are excited. 4jj L+(ct1m) I [f- 2ijimL+((im) f

A0  iL+ ml+
I1 _-f2 0ImaL+kT 1-f 2

(2-19a)

A -4ij nmL+(olm) 1 f 2ijlmL+(clrm) f2

Im -.. , 2aL+(k 2=m koa 2 2M+(k) " I- -lm k-fI

(2-19b)

B0 4i(k+ctmm) M+(aim) 1 f,
Im ,(1 1 L+(k) 2 1-f2

'lm 2)
3 m

1M1

m k ' a(l --- l )2M+(k) k/ Z cl~ f j

i(k+ctjm)M+(t m) 1 (I-1fd)

ktima(l - )-2)M+(k) I

Jlm

In both TE and TM cases, rotation of the incident field from 6 to
corresponds to an equal rotation of the azimuthal dependence of the
waveguide mode; otherwise the coupling coefficients are the same.
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For purposes of comparing the relative importance of these
couplinlg coefficients, the power flow associated with each of the
modes can be computed. For TE modes, with an incident plane wave
of unit amplitude based on [Collin (1960), p. 179] the power flow
is computed as

P I /12  kcx mQ?) ff (p,,)I 2 da (2-20a)

lfi ta 2  27r a Co J(jn~p/a) 2  22

(jt )2 o niInIpdpd

(2-20b)

0' 2 21

P ka n ,~ IB nmI a 2a
2 f n (jnmp/a) 2pdp (2-20c)

nnmI

o ~[~2 - 3~) n~i~m) 2j (2-20d)

P T (ka)(at'ma)a 2  I 22e
= v'ii - L ~ m 22 (2-0e

We assumed a unit incident field, which has an incident power

density of E' = - so the normalized power flow becomes

(normalized to the average power flow and the area of the waveguide
mouth)

P (ka)(arnima) ( 2 )IBnm 2  (2-21)
(4J a(2ra2) 2 T

QI~o 
-nm
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Similarly, for TM modes, we obtain

P k=% 2 n ff I2 da (2-22a)
2 nm

lt k/co a 2n a Jn(Jnmp/a)2

- -oknm(J-nm)  n J nm 2  c (snAnmI2 pdpd@
0 00

(2-22b)
a 2

knmnm 2 2 7(Jp/a) 2pdp (2-22c)

1 co J(J nm 2  o

= kcnm (-A)Ina m I2
n m nm)2 [a2J (jnm) 2J (2-22d)

1J'( 0) 'jm

C 1 a nm a

f a A 2 (2-23)

2( oo (na2 nm

The power flow coefficients are plotted in Figure 2-8 for the
first three TEIm and TMIm modes, for axially incident plane waves.

The reason for the behavior of the on-axis cross section becomes

somewhat clearer, since we see that the TEm modes all couple much

more strongly to the axially incident pfan mwave than the TMlm modes.

Hence, the reqion in which they are enabled exhibits a much more

dramnatic variation due to the size of the change of power absorbed.
[Weinstein (1969), p. 151] discusses this behavior and proves that

asymptotically the optical cross section equals the sum of the ab-

sorption cross sections for the TEIm modes. Figure 2-8 can be comn-

paired with Weinstein's Figure 53.
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B. Off-axis Behavior

The radiation patterns of the various waveguide modes have
been produced in the literature; all that is produced here are a
few curves for comparison. Figures ?-9 and 2-10 with ka=4 can be
compared with [Weinstein (1969)] Figures 46 and 48. Figure 2-11
and 2-1? with ka-1?.77 can be compared with [Narasimhan (197g)].

Of more practical importance is the relationship of these
radiation patterns to radar cross-section. As is discussed in Section
I-C, the radiation pattern of a single waveguide mode in a certain
direction can be seen, by reciprocity, to be directly proportional
to the coupling of an incident plane wave from that direction to
the appropriate waveguide mode. If, for the moment, we assume that
the cylinder is terminated with a perfectly conducting flat wall,
each propagating mode will be reflected back to the waveguide mouth
unattenuated. For a monostatic radar system, this will mean that
at some angle, which happens to couple well to a particular waveguide
mode, that waveguide mode will radiate equally well in that direction.
Therefore, it becomes of considerable importance to know the directions
and relative strengths of the coupling coefficients of the various
waveguide modes. Obviously, for 0=0, we can see from Figure 2-8
that the TE11 mode dominates all others. From Table 1-1 we see that,
for increasing waveguide diameters, the TMoI. TE2 1, TM11 , TEoI are
the next modes to propagate. In a manner analogous to Figure 2-8,
the relative importance to radar cross-section for these modes is
shown in Figure 2-13. However, Figure 2-13 differs in that the
direction is varied for each mode so that the incident field is
assumed to come from the optimum direction. This direction is plotted
in Figure 2-14. For example, for D/X=1.5, the TEo0 has a maximum
for E at 300, the TM0 1 and TE2 1 modes also have maxima at 300, but
for E0. However, the relative magnitudes are 0.7, -6.8, and 1.0
dB, respectively. Figure 2-13 might be termed the cavity cross-
section, since it is the contribution to the RCS which coupling to
and radiation from a single mode would produce, assuming that only
that mode contributed to backscatter. Naturally, this is not true,
as other modes will contribute to some extent, as well as the direct
backscatter from the rim. We see that for on-axis scattering, the
"cavity cross-section" produced by the TE11 mode is remarkably similar
to that of the disk.

For an incident plane wave, we have from Equations (B-9) and
(B-10) (which give the coupling of incident plane waves to the axial
waveguide field)

{Ez/Ei Anm (Oiti)f(P,4,z)

S=4 

( 2 -2 4 )
_Po Hzl I (niMdg(P,@,z)
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From Equation (B-17), (which qiwy' the radiation patterns for the
waveguide modes) we obtain scattered fields of the form

O I ZE Zs COH(Os(S) Hnm ikr
E s C(0 e r (2-25)

Consider first the topline of Equation (B-9).

z n rm p/a) -iOnmZ (?-26)
- A 0 O,i)cos n -JT- e
E I i i(n o

rhi; qive' u', rm F I nm()''i ) in Equat ion (13-15) except for the

lit ect iot of propaqat ion. If we assume perfect reflect ion, and
iqnore the sign change, (since we are interested only in magnitude)
this leads to

s ikr
n0 = CO (O s l s )A, (O e (2-27)

The RCS becomes

2

o = lir 4ir 2  Es (2-28a)

4A C((.) ,1i)  (2-23b)
OE' s s nm

Since we (:ho ,e i ni, we 1 ikewi se set sn i and vary O-Oi--Os to i!S

optimum value. Note that for computations involving A and Bm,
nm om'

there is a sin no dependence in the modal fields. To adjust this
to conform with Equations (B-15) and (B-16), it is necessary to rotate
the coordinate system. This results in radiation patterns evaluated

at I T. Hence, we obtain, for the remaining three cases:

G rC (f~) B0 o 2'-- t /1, t oH r) ' s l_  ]B (o 'i ,i {

S2,i - Os = 0i : 0 (2-2)
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o = 4wC( s' 2 1An'e 0I 2

s =Tr/2, ci =T , Os = i =0 (2-30)

o=41 IC H(0s,s) 121Bnm(Oi,¢i) 2

s i = , 0s  = 0 = 0 (2-31)

The backscatter directly from the rim is discussed by [Chaung
el al (1975)1. They used a pulse radar and extracted the RCS of the
rim based on the first return pulse. The agreement between theory
and experiment is better in some cases than others, but fails to match
the detailed pattern. The normalized RCS can be derived from Equations
(B-I) through (B-4) as follows.

r i 0 kr (2-32)

s2
o = lim 4rr2  i (2-33a)

= 4a 1Soo12  (2-33b)

4 S j01o =j2 ? ~ 0 2  (?-34)

Similarly

2

Ta2 laSI0 (2-35)

Comparison of Figures 2-15 and 2-16 with Figures 2 through
5 of [Chuang et al (1975)] reveals that despite use of the complex
scmitr'ring form, and more accurate computation of the factorization
firwt ions, some substantial discrepancies still exist between

v I,irv id ( xpr i men t. Pn l lv the PPY Ianat ion i s that
any real cylinder must, of necessity, have a finite wall thickness.
[,lames and Greene (1978)1 showed that this leads to substantially dif-
ferent results than obtained with the infinitely thin "knife-edqe".
Of course, the accuracy of the measured results is a possible soirce
of discrepancy.
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C. Reciprocity Considerations

It is evident from physical considerations that there must
be some relationship between the coupling of an incident plane wave
to a waveguide mode, and the waveguide radiation pattern of that
mode. This will be shown by the reciprocity theorem.

From [Harrington (1969), p. 116-1171, if the current Ja produces

fields (Ea,Ha), and current Jb produces fields (Eb,Hb), then

- ;(Ea x Hb - Eb x Ha).ds = ffS(Ea.jb - Eb.ja)dv (2-36)

s v

where the surface and volume are of finite extent. Generally speaking,
reciprocity is applied to sources and matter of finite extent. In
this case, however, the matter is of semi-infinite extent. Usually,
it is shown that the surface integral vanishes far from all matter
and sources. In this case, we will assume that it vanishes external
to the waveguide, and thus need only evaluate the 'power flow'

(E x H ) inside the waveguide.

First, we apply reciprocity to determine what source will produce
a plane wave incident on the waveguide. We assume that there exists
a current dipole, impulsive in space, of either e or ^ orientation,
located by R = (0=0o, =n, r=Ro), where Ro >> a. R >> X, as shown
in Figure 2-17. This dipole produces a far-field a? the origin of

% kI. ikfr-R01 cos
(ikl 10 (2-37a)x =1Co

o ikJ e (2-37b)
y o 41Tlr-R

0 1 (
E = e (2-37c)
z C 47T r~I Qr 0o

for § or source unit vectors, respectively. Hence, to produce
a 'plane wave' of unit amplitude in the vicinity of the origin, it
is necessary to set
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Figure 2-17. Sources for incident "plane-wave".
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"o ikI-1 ikRo0
1 = - (2-38a)

i 4TR e R

I k 0 e 0 (2-38b)

For source a we choose

a a _ e- o )0 r- 0 ) (2-39)

11---

where

6(0-0 ) 6(p-Tr) 6(r-R o0
6(-o) 0 r2si0e(2-40)r sinG

Let us first consider TE modes. These have fields given by

jo n(JnmP/a) cos nj, 'nm Z (2-41a)
z o Jn(Jnm )  sin no)

E = ikna 2 Jn (Jnmp/a) (-sin n e imz-(241b

Ep ., 2 .iy / (2-41b)

a PJn(Jnm) cos ne(p jnm

H k a j n pia/ / acos nqc -i I z=E -ia n n e-N (2-41c)

Ez  =0 (2-41d)

o  i m a nJnjm p/a Cos n -i O'_z
H =+ . . - e ,m(2-41p)

P- nm n jnm sin
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I0 2 n J I ( e (2-4 If)

0 Jm n nm cos n

+ici' z

where e means the fields propagate toward the waveguide mouth

-iL' Z
e nm means the fields propagate toward-

Let the b source be located within the guide at z -L, as shown
in Figure 2-18.

Eo ia' a -icx'mL Jn_(JnmP/a) cos nO
0=2 nm e

o-nto n( nm)  sin n

^ 01TT  JnJn p / a )p n(n ) sin nO0,

S n nm c 6(z+L) (2-42)

nm Pjn jnm) n o

This current source will generate the appropriate TE mode of unit
amplitude propagating toward the waveguide mouth. It will generate
the same mode, of equal amplitude, propagating toward the infinite
recesses of the waveguide. Note that since the leading sign on Hp
and H changes with direction of propagation, the discontinuity in
tangential H exactly matches the surface current. However, Ep E
and H are all properly continuous.

Next, according to Equation (B-10), an incident plane wave

with() polarization produces a field inside the guide.

E B0 sn n Jn(jnmp/a/ -inmZ

Hanm n___ p nm (2-43)
z o n m cos n

According to Equation (B-17), the TE mode propagating toward the
waveguide mouth produces a far-field 'attern

(E b C ikr P
0  COH e 0 H (2-44)r H nm "b C0E C
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Plugging the currents and fields into the reciprocity equation,
taking the surface and volume indicated in Figure 2-18, we obtain
the following result. For § incidence Ha has sin n dependence,
so we take the bottom line of Equations ( -47) and (2-42).

2 ~ . -ic '

b2 T ikae nm
fff Ea.j dv=: Y f f f B nm e
v n m -co 0 nm

( n a  n (jnm p/a) J'"(j p/a)
a nnm cosWn -Jn~ ) nJnmP/•n nmnJn ) si

C in' a -in' L a n (jnm_/_)
2 0 nm nm anmjnm en P n "F- -co

FJnP/ am )j m

jn(jnm) sin n 6(z+L)pdpd~dz (2-45)

We invoke the orthogonality of modes to assert that the sum-
mation reduces to a single term, as this integral vanishes except
when the mode and current have the same radial wavenumbers and azi-
muthal dependence. When this is satisfied,

1 2
f cos 2n4d f sin2n~d4 (2-46)
0 0

i c' L C i 't -i a

1fa-jbdv Bnika ein 2 -- e InTmLv nm 0 o nrr

a 2 pn(jnmp/a) (Jnmp/a) 2
f (n m,  P j nm pdp (2-47a)

o ,njnm n jnm/

21TBOmkaa a a 2a2 J n(jnmp/a)2
n(mi 2 2 n + Jn /a)2A do

n jnM)' 4m 0 O\Qm

(?-47b)
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2i B kact' a -c a2
mk . nm2 n(Jm /a)2dp (2-47c)

n(jnm)  n o

0 4
,Bnm (j6 2-n2) 0 (2-47d)

Jnm

Since Eb is generated by a field with a sin n depenience, this will
rotate the radiated field generated by COH by n/2. Hence, we evalu-
ate COH with a cos n s dependence.

fffEb.jadv=fff OH oI r -0
dv --rf/fo e V~r-Ro) dv

r k0v v $ 0C

(? -48a)

ikR

ko o i4TR°  -ikR

'OH k -

4Tni 0 C
k OH

This surface integral within the waveguide becomes

* (E x H - E x H ).ds
s

2Tra
f f (Ea x H - Eb x Ha) . ipdpdp as z (9 - (-49a)
0 0

2Tra a ab_ ab) ,b~a b a]
f f (E P - E H P dpd (?-49b)

We observe that H a B H b
z nmz
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Then, since each of Ep, E , Hp, and H are based on Hz, the fact
that they are scalar multiples forces the integral to vanish identi-
cally. Thus we are left with

2 2 2itkact' a a (j'm -n ) Cnm .. . Bnm 4v i H (2-50a)

jnm 0 0

1k 2 (jm2-n2)

ikA kaa ma a 2  )j 2 B 0  (2-50b)
COH m_ ., 4  nm

which can be seen to be satisfied by some simple algebraic manipu-
lat ions.

For a incident plane wave, we note that H a has a cos n depen-
dence, so we take the top lines of Equations (2-41) and (2-42) for
both the current and waveguide fields. This results in exactly the

a b b asame integrals for both E .Jb and E .J , with O-q so that

~2 2
i ik2  4 (Jnm 2-n 2

anma Bn (2-51)pH 4m 4nm

which is satisfied identically.

For TM modes, we begin with

J n(Jnmp/a) cos nil t inmZ
z (jnm) Lsin 02

nn

2 3(jm p/a) -osin n -nmz

E + Wi na n nm i e (2-52c)
- nm nm n(Jinm n nin Lcos n e
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ikna2  o a n(Jnm p/a) C-sin nF e i nmz
Hp nm2  VP p OSn -M- e (2-52d)

H ika 60 Jn(Jnm p/ a )  cos n -1cn
n nmn@'nm

H e (2-52e)
Jnm P J0 -nm) sin nJ

H =0
z

+icnmZ

e propagates toward mouth '2-52f)

-icnmZ
e nm propagates toward -

Let

b F- ikae -it Fna Ln ( 0 p/a) sin n]

n2 n m L j § 5fmV n n CiO Yn C os n

dJnm p/a) sin n 5(z+L) (2-53)
nC nm 1sn nIj

This will generate the appropriate field traveling toward the wave-
guide mouth. However, to generate the discontinuity in tangential
H, the leading sign on all terms must be reversed for the mode
traveling toward the infinite recesses of the tube. However, as
before, this is of little importance since it contributes nothinq
to the reciprocity integral.

The incident plane wave generates fields

E Amco nm Jn(jnmp/a) -i(nmz
Ea = nmA sin n¢ -  -  e i5n nme

The modal fields radiate
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tE ) 9EJ nm r P2-55)

For the incident field we obtaitn

fff a0 21 a-Aa Z

v -CO o o inm jn) n l

+ _ dan(jnmp/a) E i rx ei nmL

( n m pnJm/)snn nr(JnrrP/a)cos nib) 6z

pdpd~dz 
(2-56a)

2
it -oA 0 ~nm a e 1 xn L ika o L

p nm eni n3n
2 ~ 2  -nJ

(djnm/a)2 + Y ninmp/a) 2

(n 2-2 ) djo (2-56b)3nm0

0 2
0i j 'nmr,~n) Jn(Jnmo/) d (2-56c)

0 kcx a 2  1 ?S
C r jnmJr7Jn7)27a dn nm)
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m an a4

I~~ 0 -56e)
nm

ikr c i4nR -ikR
E" di d/ (ff OCOE+ E) r 0 k e 0(r-R)dvv v PO 0J

(2-57a)

[ E T (2-57b)
0

Equating these leads to

4

.r A k nma  1: 471i

PV nm - -2 oo COE k
0 Jn 0nm

COE 4 2 Anm (2-58b)

nm

Finally, for incidence, the field generated has sin nt depen-
dence, forcing us to the bottom line of the current and field distri-
butions (Equations (2-52) and (2-53)). The integrals all end up the
same, resulting in

ik~ama4- A a # (2-59)
C#E - - nm

4 j nm

Therefore, we have demonstrated the relationship between coupling
of incident plane waves to waveguide modes and the radiation patterns
of waveguide modes.
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CHAPTER III
SCATTERING BY A REPRESENTATIVE ENGINE-LIKE

OBSTACLE IN A WAVEGUIOE

This chapter is concerned with scattering by a simplified model
representing an engine geometry in the intake duct. The model consists
of an infinite circular waveguide housing an axially symmetric cone
centered on a flat plate, both perfectly conducting, as shown in
Figure 3-1. This model is based to some extent on observation of
the Pratt-Whitney J-57 turbofan jet engine, on display at the Air
Force Museum, Wright-Patterson AFR, Ohio. In this study, it is
d' ';ijliied that the TE1 l mode is incident; similar procedures could
be followed for any other incident mode. The coordinate system is
centered at the base of the cone, as shown in Figure 3-2.

The calculation of fields scattered by the cone in situ would
be known completely if one knew the exact currents on the obstacle.
The scattered fields can be obtained straightforwardly from the dyadic
electric Green's function and the dyadic magnetic Green's function,
based on the integrals given by [Tai (1973), p. 9].

iwRilo fff 'e(RR)() dv' (3-1)

H'i(R) = fm 2 (RR)J(') dv' (3-2)

Allhomuh the source singular term for the dyadic electric Green's
furirtion is still being discussed in the literature by[Yaghjian (19,1l
and others, the Green's functions at points not near the source can
be obtained unambiguously from residue series expansions. These
expansions consist of a double summation over n(azimuthal index)
and m(radial index) of terms representing TE and TM fields, both
propagating and evanescent. Hence the coupling to a given mode can
he determined by a single integral, allowing one to obtain either
F7 M lJ., based on known currents. Mathematically this can be ex-
prossed as follows: Omitting the source singular term, one can write
(us;inq Tai's notation)
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Figure 3-1. Basic geometry for engine scattering model.

Ap

Figure 3-?. Coordinates system and dimensions for
scatter inrg from an axial conducting cone.
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~ =-mr R R
n nL 2 I NenX(+k)Ne" (Tk>) +n =0 m=l XI 0 o"

+ Men (+k, )Re' (;-kp)
IkIPll 0 -

for z <>z' (3-3)

Gm R = V X e

~ r K
1- 4i ' i n- 2 -Me (+kX)Ne'n (-kX)

'hin 2 nX-)n X
n 0 m=l XkI x  0 0

+ X-ffe (+k )Ne (;kll

p2k I1 onp -  nn'

for z > z' (3-4)

where

nm/  X = Jnm/a

k= nm k> nm
=- _n]r2/jn .2 ,)22 2

Ip t~n(l m2)Jn(inm I>,= aJn(Jnm 2

= k KX = k

n= n=O

2 n=1,2,3 ...

N(h) represents TM electric fields or TE magnetic fields; N contains
an axial component

M(h) represents TE electric fields or TM magnetic fields so that
M is Purely transverse.
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I r exalp , r, o a i riq I , I I in( , we cai obt a in

H Z,,m  z m2 dv'

4 -2k z zNen (+k R) e. (+k )-J(-') dv' (3-5)

and similarly calculate E using el The elements of Gel and
are written out in Appendix C.

Because of the difficulty of and restrictions on previous
solutions for current, a new technique of solving for currents was
explored. A few cases have been previously solved with great effort.
For example, [Tesche (1972)1 solved the problem of a skewed wire between
parallel plates by using images. [Wang (1978)] used the dyadic elc-
tric Green', function to solve for the currents in an arbitrarily

',hape(I dielectric body inside a rectarigular waveguide. [Harrington
(1961), pp. 402-4061 gives a variational technique to find stat ionary
formulas for scattering using approximate current distributions.
He applies this to a post in a parallel-plate guide. Unfortunately,
this method requires computing the self-reaction of the assumed
current distribution, which in most cases is equally as difficult
as solving the problem exactly, since it requires computing the
electric field generated by the assumed current in the source region.
Hence, no computational advantage is obtained over solving di-ectly
for the actual current by the method of moments, or some similar
technique.

In principle, the problem can be solved by the method of moments
by assuming the current distribution to be a collection of a series
of pulses with unknown weighting coefficients, calculating the elec-
tric fields generated by these pulses, and adusting the coefficients
such that the tangential electric field vanishes as the surface of
the obstacle. The problem with this approach, as pointed out by
[Wang (197,)], is that for coplanar field and source, the dyadic
electric Green's function converges extremely slowly, if at all,
in addition to the problems involved with the source singular term.
Convergence of the residue series is enforced by the axial propagation

factor e , which becomes e , for large enough m.
For coplanar source and field, this factor becomes unity. In Wang' s
case the problem Wl; solved by summing the resultant series 'without
the convergence factor-) in closed form. In the case of the circular
wavequide, we havo a Fourier-Bessel series whose summation in closed
form is not readi ly apparent. For example, the z component of G 1
i,; given by
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2

e Jnm
n 2 n24Jn(JnmP/a)Jn(Jnmp'/a)cos n4 cos nq'

elzz 4-r n J, 2 nnm n nm

(3-6)

Taking asymptotic forms for j and Jn( ), assuming n~l, for coplanar
source and field point, we obain

iIm - (ln+4)7T (3-7

Jl(x) X cos(x-3n/4) (3-7

-cos cosL m'~

cel2z - 14)cos((m+1)TTp/a-31T/4) cos((m+1a)ip'/a-3r/4).

(3-8)

It seems that even if p and p' are different, this series does not
converge. The series does converge for real objects after inte-
grating over volume currents of finite extent, since integration
over p' results in dividing the asymptotic terms by (m+1) , and
integration over z multiplies the element by the differential dz,
forcing the coplanar elements to make an infinitesimal contribution.
Tho reminder of the integral is well behaved, due to the convergenc.:
fa, tf:r for noncoplanar points.

This extremely cumbersome process seemingly cannot be avoided.
However, poor convergence in the source region suggests a similar
problem in free-space scattering, and the superior convergence of
the magnetic field integral equation (MFIE) over the electric field
inte(iral equation (EFIE) for most obstacle scattering problems.tot,

We thoefore proceed, analogous to the MFIE to force -s =  x H..

just. outside the surface of the conducting body and n x H ttal=0
jtvst inside the surface. As with the MFIE, taking the mean at the
';urface results in dividing the current by two. Assume the current
co-Jists of a collection of pulses of arbitrary weighting

s F
ak p (r - r k)uk (3-9)

where U is a unit vector tangent at the surface at rk and p(r-r

i l, 1)',,ized near rk. Then
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R( s) : fff m2(RR')'J s(R') dv'

a kaN ff 6m2(RRf').kP(R'-r k ) ds' (3-10)

k

Enforcing the boundary condition

n x -total = nx Ri + xjis

x s
nxi : -~ xj-S

S

x R) DIM a k jUk-n x ff m2RR ' k(-r k ds' I

(3-11)

We can then enforce this condition as many times as necessary to
obtain the required number of equations to solve for the ak's. The
advantage of this approach is found only by careful eKamination of
the convergence properties of Gel and m2' The least convergent
term in Cel goes asymptotically as m sin mx, but the least convergent

term in Gm2 goes as 1 sin mx. After integrating over the surface,

we obtain sin mx or Cosmx which are converqent. Hence, we can
m r n

work with surface, rather than volume currents, and construct a
relatively simple code. Additionally, there appears to ho no dispute
concerning the behavior of C in the source reqion.

With the gerNnetry shown in Figure 3-?, we define

^ L + b z

n --

L 2 + b2

S$ z

x L 0 b b( -l)

L? +b 0 1 0

Assume the current consists of the sum of pulses
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N N
'Is1-- k' P(P-Pk) + kl bk P(P (3-13)

where P(P) is d trianqular pulse function. This current distribution
iV ,hown in Fiquro 3-3. Then using Equation (3-11), we obtain

ti, - P~ox ffds']n x H i  ) d k t).P(p Pk) -n x fJ m2(R,R').t p(R-Rk)ds
Xk k m2

+ [ kF'p(o k ) - x ff m2(R,R).4 p(R'-rk) ds',1

k L

(3-14)

Next, to employ Galerkin's method, we generate 2N equations by multi-
plying through by each basis function and integrating over the surface
S, to obtain

n H(Rp(R-r ) ds

k I 1 _ ]m
Vu .ti- ,-rk)dSdsl

N

+ k 1_ ) hk I-ff P (R-r k)P (R- r q)ds ( i "$)- inx.r.rf.r n (R-r q) m RR

"$p(R ' k )dsds (3- 15)

! = 1,2,. ..N

1,2

where U1 = u? t.

Thus ?N linear equations for the 2N unknown coefficients a and bk
can be obtained, which can be straightforwardly solved by inear
algebra.

In order to further speed computation, elimination of unknown
currents in the backplane can be obtained by using the method of
iinaqes. Instead of the original problem, we introduce an image such
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Figure 3-3. Current pulses for moment method solution
of scattering by cone.
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thut the imaq, of the cone has image currents on it, and the image
incident. field is assumed to be present, as shown in Figure 3-4.

-total=ffoao
This automatically forces nxE o and n.Htotalo in the backplane,
hence reducinq the amount of coplanar integration necessary. With
this technique, we obtain a solution for the currents on the cone,
thif integrate these with Gjn2 to obtain the H-field in the backpline,
hence the currents in the backplane. The current distribution thus
obtained is shown in Figure 3-5. It would be extremely difficult
to measure this experimentally, and constraints of time and money
prohibit this verification.

The fields in the region of the cone-base termination can be
dpproximated in the spirit of the WKB approximation, if the cone
is slend( r enough, and the cone diameter varies slowly enough with
axial position. At each axial position on the cone, it is assumed
that appropriate TE fields exist for an infinite coaxial line of
the same inner diameter. Since Ez=O, this guarantees n x-E = 0 on
the cone and outer waveguide walls. The radial wavenumber is then
computed by solving the characteristic equation

J'(Pb) V (pa) - Y (1ub) J'(Ija) = 0 (3-16)

for the smallest positive p, with b the inner diameter and a the
outer diameter. The values of p are plotted in Figure 3-6. Next,
the scalar wave equation for H is approximated by assuming that
11(z) varies slowly enough so t~at we can neglect the coupling of
(z) through the radial function. Suppressing the azimuthal depen-

dence, let H = R(p,z) Z(z). The scalar wave equationZ

H _ n 2 - 0 (3-17)' _ + z + k H = 0

P az

is approximated by setting

;)- R(p,z) = 0 (3-18)

sn that the wave equation reduces to

R - I_@R (2_ n 2)+k 2 2Z~z) =0

+ +( 3p -Z(z)+(k vj)R(p)Z(z)+R(p) az2

(3-19)

64



w

4,

wo
E

LL r
w z w

CL u

S.-

E

w

65



0

2.0-
0 0

0 0

ijI 0

H' 0

1.0 0

0

00

0 1.0 2.0

180-

0 0 0 0 0

W0

01.0 2.0

-900

-1800

fiv 3-s.1 Cijrrett, induced oil cone in circular waveguide with
incident If I modo, I./a-'1.f, h/avfl.5, ka=2.0 solution by

dyadli r mnot rir G reoons function.

t i



1.8-

1.5-

1.6-

1.51

0.1 0.2 0.3 0.4 0.5

NN ER/(

Figure 3-6. Elgenvalue of TE mode for coaxial waveguide as a
function of inn4s conductor radius.
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iH f, i1. was assumed that R ro) was an appropri ate combinat ion of
,..,I fuinct i'ns, this reduces to

2 (k2-2 )Z = 0 (3-20)

Since i(z) is a known function, based on the local radius, this
equation can be integrated numerically to obtain Z(z). The results
of this numerical integration are given in Figure 3-7. Finally,

to normalize the radial function properly, JIR(p,z)l 2 da must be

constant locally at all cross-sectional planes. Subsequently, H
H, and H can be determined at the inner conductor, and hence te
su'rface c6rrents Jtan and J, which are shown in Figure 3-8.

There are several limitations to this approach. Since H. = 0
orn th, inner conductor but H / 0, n -H / 0. Maxwell's equations
aro only satisfied approximately, not exactly, since the coupling
of u(z) through the radial functions was neglected. The behavior
oft ho fields near the tip of the cone was approximated very loosely
Sinuo it was assumed that the field consisted only of incident and
,cattered TEll modes immediately beyond the tip.
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FHiqure 3-7. Solution for axial variation of fields for TEp 1 modo
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CHAPTER IV
CONCLUSIONS AND DISCUSSION

IfIn' p rihl tI om f pr(' d ct it)(Ii It U a: 1" sect i on of jet ) t '.N o
1 v if t e(, i ri a spectral req ion weethn' ,ay ty aperture i S of 'resauau t
ui( iii'n in haso, been approached v ia the, exai(t W ' ener-Hopf so it i n

o r .a corn11 i- i nf i teo wav egqu i de(,. E xaIct (ni iieoric a I i nt e Qr at fi n)r S
rniriput at, orrs have been pres)ent -d f or the sem '- ii nf in ito c i r cul 1 a"c'e
I Ii tieI for eleI ,ct ri ca Id al o r 5, f rer 1 z erIo 1.e( thrI-ee w av(,een gt hs . The--r
itmpt a 1f t ion, smoothly Jin n high f requency asyraiptot ic results and

ao x nsrve to def ine the rei onovldit o the s imp]ler as v:~-
tot ic model s. Therefore onc of the matrices in d general iz,-J scat-
tering ma'trrix development of the scattering by a finite ioad'ef' (7cilq-'
wavegiiide has been completed. In the process, the nontrivial mt on
sh i ps be tween twa earl ier studies, of the somi- inf ini te cyl inrier hav,-

been developed and certain errors in a pub] i cat ion from one of thisr,
stuintes have been corrected.

Tile cntpl ing coefficienrts relating an incident plane wave, t,
I interna 1 wavegu i e mnodes have been ext racted from earlierstdes
rrr ast i n a more convenient form, and evaluiated in the resonance,
roi ion. The, predomnirance of tire T[ oe over the TM modes, in pv'
il-'nrprt inn fur axiafl inc idernec has" been deiinstrif en. Tire r ii
iirprtarr of Iii' t ivo i uwel otte'r incril for norm-ax iii inc idobit'
io-, been d(ion-nsrat rd qrip,1)h i rall Iy. T he rel1 at in0ri ShIi p be 1tW een, I t

otrill)I i n i ( ro e f irc ieornt s andt the ad iat ion patterns of the wovequ ii te
iiunli' has treeri estab I il vid a~ the, [e.vent;, r e c ip rIc ity t he(o rem.
liore elat. irsh p thus, leiontratedi is that the rad i at ion pat to-i
(Irnd the coup] ing coeff icient for a giviyea mode, at a given frequencv
Indu polarizat ion are proportionail. This, is, of particujlar iiopo'tanceo
to 0 R Ca i 1OC~ at ion si ice a gi ven viavemmi i vie mode wi 1 1 coupl e t~o anel
rotli ate efficiently in the same direct inn a!nd wi th the same pci 3'-; -

/ot. ion.

ModllIing of the leadting uraeof a Jot engine as a rsuer
)It a flot plate iris ide, a Circmul ar waveqlio ite. wehayr' roinputed fiw

ticrents on tr i' s01hsJtar l, by ws in nthf fimo iit K tO (if ntmtouit and I t 0
tvnt ic r (ininef. hc r(c , fminct ion appror at ft1 ti'' oitecrim. (ift
iircijiar wavr'gi i. Tihe r1 lecd ion cuff I Iini t tir mr int d m t
mirth has teen colrjl ito!f based or) ties', tirerIif t ' er t, t
I Y riionr jo05.

It therefore rooairis to ipp lv f hesr' resiul ts tro Erialt ionl
1-11) to svolve' the rattaor scat for mni problem in a sl-m ntro
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I i I. I fi' ii I 1i', .1 o I vf x,.-, ir,, ,~ f i x 11(
Y I I if 11 1 i 1f ln r I fI i I I Il' wI V 11 1'

h '.i I II ( 1ic1j 1t h r 'lx et n" I pi TI-II, I h( RU (",~ I bv een tciofpu t d
vilI i I p vrrty i rtj i Ki, I )[,p r Iit tac(?o to 1 .5 wavelIengths . The normfal-
~i'ii hf:; i, shtown in F 'plea 4-9. I n F iqure 4-3, the normalized RCS
io ,howni for fir' wh(,r the w~avegu ide diameter is one wavel ength

an1(1t I]ha I I at p)1 Itf I vi i1 ao ru) two to ten radiJi down the wavegu i do.

f ho cabl rt at, ir ml of o er innr f rom the inlIet mouth and coiipli na
ti) in ternalI modes has b),rn panor-m)red nodel I i ng the in l et as a c ircul ar
dk t. wi th i rrf in i toly th ;n w,,l IIs anod a kriif e-edge rim. In pract ice
i n I. I- m s have a f i i to wedge aInglIe, arid are very rarel1Y c irculIar.
The rir inadequacy en I'olintorod in cal cll at ing rim scattering for
thre knife edge by ray optics pro)ved to be the underestimate of the
perk jrust afiovt curtof f of the lowest order pr-opagating mode (comparing
F iqi i ')I irrd 2- .lnforttinately, for arbitrary geornetri es , t m,-o

Inrr hiIe no iriploIe wa to 1),-0.01 up ra ' -optics to solve this prohbil.
i 1i freioercy rl]- Tb lis oei tv- in is, low, it nay be pass PIlo

toi i v 1'li? thIm re] urn bhy iirt(iit irieflrou teebriqgris. Althorigh t'ris;
wi. inil lirrie in lris, study, we, rri s)ee that the ray optics approxi
rrI ii ion rhino work wellI pro v i ded( we are s uf fic ian], 1y above cutoff of
Uir lost orrier mode. For- circul ar geometries, this condition is
thr t. tre fiI arie ter i s great~er i han orie wavelength.

Because of the reciproc ity rel ations demonstrated in Section
fl-., it. is clear that discussion of radiation patterns and coupling
rcrfficients are redrundant . The calculation of radiation patterns
has, been d iscus sed by [We ins te in ( 1969) pp. 139-l1501. Weinstein's
corrierts ror t he Lis( of HaIygjen' s principle for calculation of radiation
pait ems, indicaites that in the transition region (near Cutoff)
Hrtvqerrs principle per-forms poor] v, and worse for TM modes than TE
nodes. As Figuires 2-13 and 2-14 indicate, the rel ative importance
of TM rrorres to backscatte~ring from cavities is very far below that
of T[- rmodes, and 1limi ted to anigle far from the forward direct ion.
Foir all pa actira] purposes;, forward scattering in the transi tion
rfi''] urr n beor ciluateil using the TE1 1 tote, adding the TE?l and
Tl(l m rod-e, as, rlin rernents, iny 'Ii tate. The reasri for this can
1hi gr'r-,ped phys ialy by coni (faering Figure 1-3. For modes highe-
thrrrr rrrI Iind for all TM rrodes, the oscil lation in sion across the
wavoqiulide cross-secct ion forces" the average interaction to a very
srrrmrll value, regardless of incidence- angle. For mzl modes, the vari-
(it imi diuo to co-, Oni rlepeninc. canr be seen to lead to an optimuJm
ir]i1 e, f ror wh i ch t hr ape rtin e f I a ns ap ac ar to be nearly of the

Ior non- i ecul lie r-fmltr ~ , I l r iar-y conal us ion we igqht
.Irrw ik- that, the pr-riaeitiii T 1 modes will dorrinate scat-
I iferin ini the forwlrrf dir tee l t. ill 'r-ner-Hopf soluJt ons are



I

Figure 4-1. Geometry for self-consistent scattering problem
using flat plate.
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not available for these arbitrary geometries, it will probably be nec-
essary to construct moment method solutions for near cutoff frequen-
cies. Higher frequencies can probably be adequately approximated by
ray-optic solutions as done bv [Pathak and Huang (1980)], for example.

The impulse response waveform given by Figure 2-6 indicates
that rim backscatter is really only significant for times of t<5a/c.
Furthermore, this short time response can be reasonably approximated
ray-optically, confirming our earlier statement that high-frequency
scattering can be adequately modelled ray-optically. The low-
frequency scattering, which is not ray-optic, corresponds to the
long-time response, which is typically of little interest.

Having enumerated the difficulties in calculating scattering
coefficients for object inside waveguides, it becomes clear tnat
much work remains to be done. The use of the magnetic field dyadic
Green's function and appropriate boundary conditions provide some
improvement over use of the dyadic electric Green's function, but
it is still very expensive computationally. The possibilitV of
azimuthal asymmetry (for example, a blade structure) has not yet
been addressed. One might model the blade structure axisymmetrically
by using boundary conditions in the backplane E = 0 and J = HP = 0
and at the outer wall J (P=a) = - H (p=a) = 0. This allows radial
currents and azimuthal ?-fields to exist, but not radial E-fields
or azimuthal currents. It further forces the axial current to vanish
at the tip of the blades. For a structure with 28 blades, for example,
it would require an extremely large diameter waveguide before signifi-
cant azimuthal currents could flow on the blades. One problem in
implementing this study would be that the image procedure used in
Chapter III to eliminate coplanar integrations could not be used,
and it would be necessary to integrate coplanar source and field
points. Another approach would be the use of the free-space Green's
function, to analyze the structure. In this case it would be
necessary to also set up currents and enforce boundary conditions
at the waveguide walls, thus vastly increasing the number of current
elements required. Another possible approach is to segment the
obstacle structure and use waveguide modes appropriate to coaxial
waveguides near the obstacle. However, the convergence properties
of this approach are unknown.
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APPENDIX A
EVALUATION OF WIENER-HOPF FACTORIZATION FUNCTIONS

The factorization functions L, (cz), and M+(ct), are defined as
beinq functions which are analytic in the upper half of the complex
(%-plane, which also satisfy the equations

L t +(Q Ti J -y a) H ( (ya) (A-1)

whor y k (Firiars-nn et al, Equaticn r (5-'W
The exact function can be evaluated by numperical intecg -!at ioil [M it t ra
and leeo, (1971), p. 107, Eqs,. (9.8)1. The approximate evaltiat ion
of these functions proceeds in two dIfferent regions, for which the
Bessel functions are approximated differently. Section A-1 deals
with exact numerical integration. Section A-2 deals with low-freque
approximations. Section A-3 deals with high-frequency approximation

A-1. Exact Numerical Integration

The exact expression for L+(cz), is given by

rI +, ±c Zn iTi~j(a k2 -z )Hr~ 1 (a k2-z2)]dz

(A-3)

wh(,rf - li(k ) < c Imn((j) < Imn(k)

Before proceeding further, however, we note that it Would be very
beref icial to not have to integrate out to -. We note that, for
Re(/zYRe(k), the arguments of the Bessel functions become essentiall
imnaqmnary. From Abramowitz, Equations, (9.6.3) and (9J..)

2_ e(if7- 9-k e (A-1)a[;, -k) K( a zV-k7



J (ialZ k ?) in l'a z2_k ?

where K n and I n( )are modified Bessel Functions.

Taking asymptotic forms (Abramowitz Equations (9.7.1) and

Tf1-2- e 2Kn( aV'z2 _ k 2  e 2ln(ah 2_-k 2

2 2z~ aT e 2 -k 2

eaz k 2 -k ______ e

2a 7 2 k 2ii k 2-

Wo are integrating ln(a zp-k2 ) from k to r, but would preferi~cy grate In(]) from k to -, since it is trivial. Hence, we for
equ at ion

We can evaluate this by the same integral, except that the a
of the logarithm becomes very close to I for Re(z)>Re(k). T
C,-0

1 Fn~a 2(1) 2
-ia k+a)L4(ca)=exp 20



___~~7 3VnpvK -zd 1 (a k a -z)H ( a k 2 -z)j

These, integrals, 1have the advantage that we can essentially intl
on the range whre - (ka±C) < z < (ka+C) and the total error thi
introduced can he made negligible by proper choice of C.

The complex value of k requires, some thought. The argum(
introducing this imagirary part is given by [Einarsson (1966),
p. 147]. The correct answer is defined as the one obtained in
limit wvhere Im(k) - 0. For the purpose of numerical integratic
two routes preseont themselves. We can either allow k and a to
110m1 1 b ut f inite, imagiinary parts, or we can at.lfeinpl to integral1
inl I ''yilmtr ic fs)h ionl about the, singjulariti , 0,it z> ind -- k,
thl'y I if' on the path of inhtegration, ant id in the aipri pri atf
Tr i d Idue",. Ini fact, the f i rs. illt ernative was chosen. It was
that, the factor izat ion funct ionrs must lie smooth, henrce slowly
aI funO ions of complex k and] c. Also, experimentat with v,
of loss,- Langent indicated the res ults were relatively c ensit
to the loss tangent. Hence, for purposes of numerical n tegrall
complex values of k and ri (being k and ai ) are defined by

00

The rec tlts of numer ical in teg r at ion for- values , of n ( the orde
tie ~~ fi~e func t e ns 1 i s te( aoi i al - )rnigfo
'Irl Py r-,entet in I atf *'X:- I. Itf wa found, by way of corif !rnl

tb,1 t there wa. exi (' lenTt. agjr,jreeet_ 'V th bot h PC and asxmiypl ot i r
Thb 1'%1 t unct ion is, def ined by

I t remTa inIIs f i ni t e a, 9
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Table A-i
VALUES OF FACTORIZATION FUNCTIONS L+ AND M+ COMPUTED BY

NUMERICAL INTEGRATION

n D/X c/k Re L+ Im Re M+ Im

u 1,. ,, v1 7534 0 .9441 I '355 0 ." 355

5, G. . b, 3 ," 5 5 1 .023 9.n7l t

U U.1 3. 1 . 47 3 0.951 1 r. %9b 0. 103ti

u .iL. - !.- 4b 1 13 51 . .1 37?'

J 7. ;. I 9.4Q5 0. 9772 "D. I577

Li I -- 2 4 .7O5 0 ' .*5 5 *).1 ts?5

Li L.e 7 7974- n.?39j 3.33

L, ,..t 6.. Q. 1"5 O.A'17O r.992 9.3159

.. C.-d-701~ 5i?7 'k .5 23 .57

Li w.-. L.Li -Y~1 .5! 7S,?0 0.55 .4562

C ,- 7-0 .'.. :;o .. 3 r. 2 5( r-).35 77

L .. ,. .2 %.352 n.957b 0.1 7

U 5).. 7.., 02 i C.5.79 7'*5 3 r.9P2

1 -,. :a, 9. 2C 57 6 0 . 74% ?.51 1 0. 4L,77

0. .t, .", '"9 7 4 o I ^.59 bC 0.9235

0. , , ..?15i 90537 .9 r .5949
i "o .- ? 51 C. 2 9 9.57 o. 5571

u .0 U . 0.4152 3.5181 .79140

u 7. 2. 1. .. 0.35 2.47P3 0. 4 3 2

0 5./. i.3 O'lC 3t 0.425 D r0.b975 0. 1
i 71 2. 0. 3, ".3 3.519 n.5200C
, . C.-, . 95957 1..'9 no.: 3.5133

, C.i2 '.25 473 9.45i7

%Jo 0.i ?.141 7 0.?51 V.*7 ,9 .. 12 42 5

u . o j . C.537. 9 0 45 r.351 f . 042
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n f/A c/k Re L+ Im Re M+ Im

A J-1 1. 355 1).735o me '1 1 3.'173S
L J-i 3,.e 1. -, 3 t 0.' 71 o .?r-?2 ? . 5-3 0

I J. , 1.%4d (.1033 0.2?2C, 2.2331

I UO,.L C.-77e ".159-1 C.2d90 1.770
j . ., 0.4>4: C0.1 25 0.3033 1.6039

2 . Co I. "77 1 C.1303 C.2021 1.50'-7
I J.2 U.e 1.31 9 .175 0.2352 1.27Q5
I j., .- t 9. o. 9.23 ? ".2565 1.)169

, L. T. 51 0. ?7)4 r.2713 0. 993
0 .9 . 0 7 9.2901 0.2521 0.397b

A ,. 1.0 1 . t.,0 r).12 1 t 0.2902 C..9 2 n)5

1 .. .,. 1. 77. 1.2552 0.1895 1.9155
i j.0. : 3 C . '169 0.214!3 0.1614
I .' . q .%52 0.3577 C. ?342 0.7506
1 ,.3 ,. 5.3 >7,t 0 .3"'9 .7405 0. S91

., 0.7 3 ).s r.?blS 0.5C52

i o.i .J C,.7 t, C3 . ,j77 0.2712 3.5551
L .,., .j 1. 3 ?) 9.3923 0.124C 0.7390
i .6.., u.2 0. 95z .4359 0. I 50 0.6173
I ,,., ,.9e9-4 7 1 1.991 1 .5351
I -'. t ,.o.0 7,7 7 5 .. ue r). 2242 9.4790
i 3. . C. ? .t 1 1.4532 Co_? ?7 F) .43 7 1

L 5- 2.. 4~5? 94s9 0 0 .? 5 59 0 4
. .. 5 C.5 2 .5197 0. 9 ', 9 5  .751
L z 0o.19 1% 7. 5 3? 0.1250 0.3925
i ... C.. 0.71 2 9.5235 .1797 0.345b
1 .. % j3o 0. 5042 C.? ?,6C 0.3195
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j ,-b . 55 .211' .121j 9.122t 0.5 VA

-) ,t. . 91 7 . 54,, 'D. 1424 n.5261
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89



A-2. Low-Frequency Approximations

Derivation of 'DC' forms for the factorization functions is
not difficult. They can be obtained directly from the small argument
approximations for Bessel and Hankel functions. For n 10, we get
(Abramowitz, Equations (9.1.7) and (9.1.9))

n

___ -2i(n-l)! (A-13b)

, n (A-13c)

n+a 'aH, I(a (A-14a)

M+(e)+-a n- 7.i (ya)Hl)y (A-15b)

(n-I)! n+7 ya

a ( 2 -n 2(A-15c)

M+ (a a~k-+vrn-(A-76)

For n 0, we note that

V~z) =-J 1(z) (A-17a)

HM I - H~1)(z) (A-17b)
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I
Hence,

M+(n=O,k,a) = L+(n=1,k,) (A-18)

From Abramowitz Equations (9.1.7) and (9.1.8), for n 0

L+(%)L+(-a) = riJo(ya)Hl)(ya) (A-19a)

F ffi.l. 2i 9n(ya) - 2.n ya (A-19b)

-In(a 2(k 2_-a2 ) (a-19c)

The factor ition of this DC Form is non-trivial. Based onrWeinstein

(1969), p. 335-361 we may approximate L+(a) J i 9n a! l k) for
a << k << 1. An(2 ka )

Having thus obtained the first low-frequency approximation
with ease, it is extraordinarily difficult to obtain a better approxi-
mation analytically. Lee, Jamnejad, and Mittra present a simple
derivation. Unfortunately it does not agree with the results of
numerical integration. This can be seen by comparison of their
formulas with the plot in Figure A-l, which shows the trajectories
of L+(k) and M (k) for n=l computed by numerical integration. The
inclusion of additional terms from the small argument approximation
does not improve matters. The approach taken, therefore, is that
for small values of ka, the values of L. and M. are computed by
numerical integration, and interpolation is used.

It turns out that, for L (n=l,oz=k), the values over a surprisingly
large range (0 < ka < 2) can be approximated by

L S (1-i.0584 ka) (A-20)(I+i.68 ka)

However, this does not admit any generalization, nor does it possess

any theoretical justification.

A-3. High Frequency Asymptotic Approximations

Using the large argument approximations for Bessel and Hankel
functions, we obtain (from Abramowitz Equations (9.2.17) through
(9.2.20))
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1.0

0 0.5 1.0

Figure A-1. Factorization functions L+, M+, $M+ for n=1, cx=k.
Arrows indicate increasing k.
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I
L (a)L+(-x) = TiJ (ya)Hl)(ya) (A-21a)

T n

i0n(Ya)
-'riMn(Ya)coO (ya)Mn(Ya)e (A-2lb)

M+(a)M+(-a) = T ij (Ya)H'(l)'(-ya) (A-22a)

+ n n

in (ya)
= iNn (ya)cOSn (-Ya)Nn (Ya)e n (A-22b)

i24'n(ya)
= TON(Ya))2(l+e i ) (A-22c)

Where, from Abramowitz, Equations (9.2.28) through (9.2.31)

Mn(z)2 2 [1 + 4n 2-- 1] (A-23)n -'} 8z'

O(z) P z - + )7 + (A-24)

Nn(z)2 2--- I 4n21-3 (A-25)7Tz 8z 2

4n2+

() Z n 1 4n2+3 *(A-26)
Cn,(Z) 'r z - (- - *4)7r + •(-6

For L (0t) we observe that we can separately factot the two expres-
sions+, making L+(a) the product of two factors, both of which areanalytic in the upper half-plane.

L+(c) L I (%)L I(') (A-27)
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i1 2 + n2

8

2 2 4 n12 -

ya 22 2
yH/

k -. + 2 4n -1

a-~ a/k a (k -A-29/

( 2 a2 
+ 

-1 
2 

2

a2(k2 2) (A-28)

Hence, by inspection

i 2 4n_1
2 a (2 _ + a _ )

La k00_ a(k 2a2 2) (A-30)
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J. e___ 8~2
- (A-31)

+ /a-( k +cz a(k+a)

In evaluatingLI (a) and M 1 (0a), we follow the derivation of M'ittra
et al, (1975) +

111 i20 n(Ya)
L aL (-)= 1 + e (A-32a)

MH (t) m I(-aL) = 1 + e i n a)(A-32b)

The exact expression for L+()is given by

I I I O zn 1+ () 8~y)

L+ i(ot) = exp T 1  n dz} (A-33)

Let

I 70 Zn6 + l2 a ) dz (A-34)

Then the identity

wm

ln(l + X) = m=1 m ' IxI < (A-35)

can be used to obtain

M~l 0 e i2me n(ya)

m=l m -0 Z-a

provided Im(en) >0.
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Let

CO i 2mOn(ya)dz(-)

-m I Z-O z (-7

where

0 (ya) -- ya - (n+ ~ + 4n2 I (A-38)
nl 8ya

Ya = a422(A-39)

Let

z = k sint (A-40a)

dz = k cosT dT (A-40b)

ya = a4k20k2 T ka COS-r (A-40c)

The contours of integration in the z and -T plane are shown in Figures
A-2 and A-3, respectively. The contour in the Tr plane is selected
so that ya has the right sign, and the integrand vanishes at both
ends of the contour. The contour in the T plane is then deformed
to the steepest descent contour. Since no poles are passed over
in this deformation (for Re(cz)>O) the integral is unchanged. Hence

i2mO n(kacos-r)

Im feksinT-ci - CSTd

f COST e i2mO n(kacost) T(-1
C CSiT n

With a (kaCOST) = kaCOST + 1 4 2 1(A-42)
n 7r ~ 8kacosr

4n2 _1Let XL=8k) (A-43)
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Rez

Figure A-2. Contour of integration in the complex z-plane.
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(z k

c ,v Rer
T

Figure A-3. Contour of integration in the complex T-plane.
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I s n,

Im is an integral in the form

f F(T) e Kf (T ) dT

C
SDP

where F(T) = COST (A-44a)
sinT -

= ka (A-44b)

i2m n(kacosT)
f(t) ka

= i2m(cosT - (n+ + L (A-44c)

This can be readily evaluated by asymptotic techniques. We make
a first approximation by ignoring the pole near the saddle point.

X sinr

f'(T )=O = i2m (-sinT + L -) (A-45)
cos T

Ts =0 (A-46)

Then f"(T) = i2m(-COST + 2c os 2 XL)S ~Cos3 T L

= -i2m(l-XL) (A-47)

The asymptotic value of the integral is then

ICf ( t T ) e -  2 it __ -( ( A -4 )

m e e4 F I s

where Is the angle of the CSOP through the saddle point.

99



f_

f( = imon (ka) (A-49a)

F(T k (A-49b)

f"(Ts) = -i2m(l-XL) (A-49c)

Thence

rei2men(ka)e -2mkal XL )
( "  (A-50)

ii2mn (ka) -ir/4n e e (Am50)

-OiD / ei 2monn(ka) e iT/M= I m 01 k(TN

12me (ka)
k i,/4 e0k e Vka(B  mel in31m (A-51)L -X L) m m312

The indicated sum is shown by [Chuang, Liang, and Lee (1975), p. 773]
to be a modified Lerch function. They present a development of its
properties and a transformation to simplify its evaluation.

m i2mO n (ka) i2nmp-lym e 3/ e 31 L(p,3/2) (A-52)

m=1 m3  m=l in

where +inm + i2me n(ka) = i21tmp

en(ka) 1
or 2 (A-53)

This function has two useful and simple properties. Since the
parameter p appears only in the exponent, and
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,I

i?innp+i?up inmpe SC

L(p+1,3/2) L(p,3/2) . (A-54)

Furthermore ei2
nm(I-p) = e-i2

Timp

L(l-p,3/2) = L*(p,3/2), where * denotes the complex conjugate.

(A-55)

By using these relations, it is possible to transform any value of
p to the range 0 < p < 0.5. In this range, the series solution is
extremely accurate

L(p,v) r(l-v)ei(l-v)7r/2 + o im v-m)( (p)m
+) =" -(M! (A-56)

(27rp) l- m=O

For v:3/2, this gives

L(p,3/2) = -2n /p.(l-i) + X (Rn + ii np)p2n (A-57)
n=O

where values of R and In are given by Table I of Chuang, Liang,
and Lee (Note sign error in Equation (35) of Chuang et al (1975)
corrected here).

We can similarly find an asymptotic form for M+(a). The analysis

is identical with on (ka) replaced by *n(ka) and XL - M  4n2+34n(ka) 8(ka)
This results in p -12. Otherwise the expression is
unchanged. + 1

I exp [L M 
(A-58)

M+

Where

k -ii/4 ik 0 n (ka)

I k e" ai.XL L(p,3/2) p = + 1/2 (A-59a)
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k I, @ ( k a )

M (X Vkd___l-XM) I (p,3/?) p = . + 11 (A-5h)

A comparison of these results with those obtained by numerical inte-
gratiion is instructive. For a=k, the agreement is very good down
to the first zero of Jn (ka) or J,(ka) (for L+ and M+ respectively)
if the proper form of 0 n(ka) or n(ka) is chosen. This is illustrated

in Figure A-4 for M+(n=l, a=k); the exact value of M is compared
to that obtained by using the two term and three term approximations
to p (ka). It can be seen that a rather sharp minimum occurs for
the xact form of M. for that value of ka for which J '(ka)=O. For
the two-term and three-term forms of 11 (ka), the minilum occurs at
the value for which cos~l(ka)=O. Thus, the more accurate On or n
should, in general, lead to a more accurate approximation for L+
or M+.

L+ and M are also functions of a/k; we must explore the ac-
curacy of this approximation when this ratio varies. This is impor-
tant since oVK = cosO for scattering, radiation, and coupling problems,

and Jnm ''2

and r/k 1 - (---) for coupling and radiation of waveguide modes.

In Figure A-5, the value of L+(n=l) is plotted in the complex plane,
where the main curve traces out the real and imaginary parts of L
with ovk and D/X as a parameter. The dashed curves then indicate
the trajectories which occur when varying a/k while holding ka (or
D/X) fixed. It is immediately evident that the preceding approxi-
mation does not, in general, capture the nature of this behavior.
The reason for this can be sqen from Figure A-3. As a/k varies,
the pole located at T = siX'(a/k) moves closer to the saddle point
at Ts=O. We totally ?gnored this pole originally. Without belaboring
the point, it will only be stated that rederiving the approximation
incorporating the effect of the pole produced only a marginal im-
provement. It was therefore necessary to include two terms in the
asymptotic expansion. This derivation follows.

With the same definitions of K,f(T) and F(T), we have the
asymptotic approximation

1O?
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1.0 \0.9 \

0.8 - EXACT

0.7\ 2 TERM
0.6- 3 TERM

0.5-

-0.4-

0.3

1.5

S1.0 -

+

.0.5-

0 I I I I I
0 0.5 1.0 1.5 2.0 2.5

D/k

Figure A-4. Factorization function M+ for n=l, cL=k,
calculated by numerical integration and asymptotic

approximation based on two and three term
expressions for phase of

Bessel function.
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I
IV

cf(T fv
tm e e~s F(T S

sf (')( 2n T -f(

+ iA (I - t(KA)) F(Ts) f (Ts)f"3()5f"'(tSf' S
f"'(Ts) F" 1

+ F'( Ts) "(S S) (A-60)
S f" (T S) 2 f ( S )S 1

where j(X) is the transition function defined and discussed by
[Kouyoumjian and Pathak (1974), p. 1453]. A is a distance parameter,
relating to the separation of Ts and Tp defined by

A = i(f(T ) - f(T p)) (A-61)

The saddle point is unchanged, so Ts=O. The pole is located at

Tp= sin -1  (A-62)
k

We thus derive Table A-2.
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TABLE A-2

SUMMARY OF ASYMPTOTIC FUNCTIONS AT SADDLE POINT IN T-PLANE

Function form Value at T=

f(T) imCS-7+ +)W- XLs i2m(l(7 + V)*Tr + X L)

f,(T) i2m(--sinT+XL sI fT 0
Lcos -F

fT) i2m(-cosT+X 2-cos 2Ti2m(-14-X)L Cos 3  L

fili2m(sin-r+XL sinlT( 6 -COS2 T)) 0
LCos T

f (iv) (T ~~oTXcos 4 -20cos 2 T24 im1
L Cos 5T L

F(T) COT-/ -k/ct

1sinT-oLk

F'(T) 
() in-

(sinT-a/k)2a

Fll(T) -c/k sinTCOST-(ct/k) 2 COST+?cOST k - 21

(sin T-c/k) 3  O
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A=i(f(T) S f(T ))

i=~ (OS + 1)1+ XL -CS (n + 1)r+ X

(A-63)

COSTS=

COS-rp (ok

- 2m ~x +XL
A = -2m(~L( 1-(('/k) /

-l (ct/k2

-- 2m( 1l-(c1k)2+XL( 1 (A-64)

i2m9~ (ka)f
~e e 7rn. I - -5

+ i(1~kA)).(- !~3i2m [1+5XL]. i2m[-1+XL]
+ i ( 1- (ka)) 1, a) 3(i2m [-1+XL3

+ L 2 ~ 1 2.))1! (A-65a)
o?~ 12m(-+XL~
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k 12mO (ka)

Ti Ti/ 112 n-(~)

~-uI1Kal)J4 - (-65b)

1 m + - l 1 XL)2 -l+XL 1

Define

A 6 2[ l(t 1 + 1 L (A-66)

-3+9X L + 8( a (1-X L) (A-67)
A0 -8(1-X L)2

A1  k 1T/ ei 4  (A-68)

A, i2ipe (ka)r1
I -- e n 1 + A 6(1-j(mkaS)) (A-69)

mri m

00 A1 -A) e i2m n { +A (ka6))j 6
'rM 1 ,rm

~A1 (L(p,3/2)+A 06G(p~q)} (A-70)
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where

G(p,q) = Ym-31 2ir e i2Tnp(1 -(mq)) (A-71)
m= 1

q = ka~S (A-72b)

We could follow exactly the same analysis to obtain M+, except that

On (k a) n n(ka)

X L +* m 42+32 (A-73)

These formulas produce a very good agreement with the results of
numerical integration, down to %/k=0.2.
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APPENDIX B
SUMMARY OF WIENER-HOPF COUPLING AND SCATTERING COEFFICIENTS

The coordinate system chosen in these equations is that des-
cribed in Chapters I and II. Hence, although the results are derived
from Einarsson et al (1966), they have been transformed into our
:)Ordinate system.

B-1. Direct Scattering From the Rim

These coordinates are cast in the form

FE 1 Fs 1 E1
ELSSJ (B-1)

Where both Es and El are expressed by

+ikr
e r (E 0 + $E ) (B-2)

+ikr Es
where e is for E

-ikr Ei
e is forE

The expressions presented in Appendix B are all asymptotic in the
sense that they are far-field and valid only far from the waveguide
mouth (kr >> 1)

- Jn (kasinO i) Jn (kasines)

0 onCOS n s  sinOiL (kcosOi) sinOsL+(kcosos)
n=o +

(1-cosO)(1-coso ) 
fn2

2(cos8ic°s85 ) n (B-3)
"n
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2i CO2 JI(kasino.) J'(kasinos
4)4 k(1+cosO.)(+-co-SO7) En ~cos % n 1 T1 nQM+(kcoseiy) M+Ckcoj

V (l+cos0i)(l+cosO) 2__

L2(cosoi+cos85) + -fj B-I

sin ri J (kasin05  JX(kasinO1)

0 (I k(+COS0 s sin@ L+ kcosODi)nl 0) Ms ko 1  I-f n

(B-5)

4i1C JI(kasin05) Jn(kasin~j) f

k(l+cosO5  nS M-(kcosO5  sinO L+(kcos 1  2
s n=I+ s iI 1-n

(B-6)

Where

= n is assumed

f nL+(k)(B7
n aM+Tk) (-7

En 2 12,3 .. (B-8)

It was found that Chuang et al (1975) contained several misprints.
A correction letter is reproduced on the following page.



A' II .14 (1 I

('rgrctlciri tlp Io 'll'h rr( qi'cy Si , ;11hit ig frnt a0,n -

Fridtid .Scni Infitile () linder"

C. A. ('111 ANG, Mt MItRl , III F. ('II A .I S S. I lANG,

Mit Miii R, I-F E, AND Slit \(;-\U I.I E,
SINIOR MiM II R, II. FE

In the ;aboi'. paper
i 

, there ss ere six sign mispiinlts.

I ) 'rime fa.lctoi ,,hold have riad exp( iwo).
2) In (I), v should ha%e read ( x).
3) In (4), (I f- cOS 0) in numer tor shotild have read (I -

cOs 0).
4) In (7), (cos 0 + cos 0 0 ) should hasc read ( I )(cos 0 +
Cos 0o).
5) In (II), (ar a') should have ead (or' a).
6) In (35), (I 1- i) should hae read (I i).

.he abose sign miprints do not affect any other
eqiltaioi, or nuincrical results.

Tlie ;tihors wih to thank [. W. Johnson arid ). L. Moffatt

fo lTillilrg somuof t l i oN viIs to th it at,.ntion.

C A (l'11.1Mr ik %%itlh Aci,'ruti ,isi \i! DI , I alo Alto, ('A lie
is ris I ,2 .it ,iS l rc Dr., Inditm lic, I l. 12903.

u. S I i ,mi. is %% ith lhe I on W,,ih liiion, G, icra D nl.,Tk'. Fort
Worth, I X I6 101.

S. W. I cc is ith i the feLtIa nicnl 0t ( it fl I l it lrigti .,ring, 1nitcr-
sits of Illinoi, Urbiana, II 61801.

1 C. A. (hu.g, C. S. I iang. and S. W. Ice, IF'E Trans..ntenna
1'r-,paat., %ol1 AP-23, pp 770-776, Nov. 1975.
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B-2. Coupling of Incident Field to Waveguide Modes

With the same definition of the incident field (as in Equation
(B-2)) the axial fields within the waveguide can be represented as

follows: CO CO A emcos n4 Jn(jnmP/ a) lan z-9
n=O m=l 0 s~min n4 Jn(nm

C C (OBen sin n0 1 (j' mp/a) -ia ' z
nH 0 nm nm

z wo0 m I Bco 0~ -nT nm

n nm

J'(j'm)=Q
.2

an k -

a

The top line of Equation (B-9) indicates that E. produces
E zwith cos 04 dependence

The bottom line of Equation (B-9) indicates that E' produces
E zwith sin q~ dependence

2E nin L+(%m) Jn(kaslnei f 2  (anm+k)(l-cosO.)
Anm a ~na L+(kcosO) kasinQO 2( +c s

(B-b11)
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A - 4in • L+(a rm) f

nm 2 L+(m n,(B-12)
kana (l+cosO.) M+(kcos1) -f

nm1 n

0 4in(k+otnm) M+(Cnm) J n(kasinO.) fn

Bnn2 L (kcosO) kasin i  1-f 2  (B-13)
n__ n

~nm( 2

B 2nin(k+aL'm) M_(O') J'(kasin.)
nm - knm a(l 2 M)(l+COO) +M(kcosOi) n 1

nm jm

f2 -(ko')(l+cosOi)

- 2 + 2(kcsOi-'. (B-14)

1-f 1 nm

B-3. Radiation Patterns From an Open Waveguide

The incident field is assumed to be a single waveguide mode,
either TE or TM, with axial fields given by

i J(Jnmp/ a )  ianmZ

Ei =E n (Jnm) cos ne nm (B-15)
nm Jjnm)

i J(JnmP/a) iCnmzH z  H n .,- cos 0 e (B 16

Jn Jnm)

The radiated field is given by
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L:j= L OE OH Enm 1 (-17

- ()1+1 E k 2a 3cos ni' L+(cin J (kasinq
C O E 2 j n m L ( k c o s ff s k)s -~i n-1

[ (c2 +k)(1-cose

+_f 2(0'm-kcos S) ](-8
(-i)n lk a sin ni' M~(t Jn(kasinO ) fn

6H (k -&)n- L+(kcosOs -- asin-

c _in+1 '2 snn L (m) f
E ----r-(T+co-o-- mf --- J'(kasin0s) n (-0
,nmCOs + (kcoso)s I ) -f-~ 2 0

1-n

1:H (-i)n I : kacos ni's M+(&'') Jksn2(1+cose )(otn...k) M+7kcosO ) n (k s

[:2+2(kcos -& 1 (B-21)
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B-4. Internal Reflection and Mode Conversion

With incident field as described in Section B-3, the scattered

field is given by

nt(Jnp/a) e in Ffn E c ncH i Enm

z  J'(Jn) e MEo n Sin nM)

L nm

(B-22)

JR(" tpa -ia' IT E] nmi
0nHp /  n nE i nH n

oIz j p mcS nn RmCOSE H0 t n n' H nm ._

(B-23)

k- n 2
RnE  Jnk L fn + (k+a nm)(k+an)
m. - nmn L+(anm)L+(ant) L -fkn + ak(cznm+n)

(B-24)

TnH _ JnkM+(cm)L+(an) fn

m 9 n 1-f2 -_ + (B-25)

n

ka(k+ '.  fn

M1nE L+(a )M +(c') (B -26)

aeln n 1-f2

knH _-_J--nn n rnn  nT (B-27)

acX (k-a'm) n* 2 - mn
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APPENDIX C
ELEMENTS OF DYADIC GREEN'S FUNCTION

FOR A CIRCULAR WAVEGUIDE

The dyadic electric Green's function, omitting the source-
singular term, is given by Tai (1971). It is assumed, in this appen-
dix, that the azimuthal dependence for Ep, E , J^, J , and HA is
cos n4, and for E , J, Hp, and H is sin n . Tis z imuthal depen-
dence is understod a d suppresses. The summation over n is also
suppressed.

V10 kE:n c e a nmlZ Zsliwp o el(Rs - m2, 1 { 22 2 [pETE]

oo m=l (jn-n2)andn(Jn )

ienmlz-zsl

+ e nm2J(Jnm)2[nk2 [ETM] (C-1)

ET 2 Jn(jnmF a)Jn(jnmPs/al - j n n Jn(jnmP/a)J (jnP s/a)

ETEppnPpsp0 a p

nj ' J'(jnP/a)J a Ps/a) 2

nm n nm n(j+ /¢( ' a)
a Ps-'F J-(JnP/a)J( Jn ps

Os a

(C-2)

117



G - igm nm /a) J I a nm n i n s
a 2  d(jnP')'j p a.~am n in p/a) - plls

.3
+pz ia ~sgnl(z-Z )i! J'(jnmp/a)J (j p /a)nm s a3 nn nm s

otn2in jnm i n (jnm/a) 2a+$ 2 m nm P/a)J n ~inp Ia)
a p nm ns nmPS

- a n, sgn(z-z )n j 2 ___- (jn p)Up /a)
a7 s nm p n nm s

1a sgn(z-z5 13
- m nm J (i p/a)j'(j p /a)

ajn nm n nm s

+a Qnmsgf(z-z nfj 2  (i nps/a)

j4n

)f7w e 2 [GTM [22 2 H
~ 2~ '(j + e 2 -

nm nm n nm anm(jnm - n nr~i)

(C-4)
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n j Jn(j p/ a)
Sici sgn(z-z ) 2 n nm J'j s/a)

niri nm s a p Jn nms

n2 1 0i p/a)
nm n nrnm( aPZ _2 p in nmps/a
a

nmn2 p/a j /a)
___ ng~- S~n jm ( nms

- i4 iisgn(z-z ) n mp/a )nimp/a
nms a J(nm PS

- nmz "J'(jnmp/a) Jn(jn~ p/a) (C-5)

nilJn(j 'ps/a)
G P iz 'sgn(z-z nmJ( p/a) ~GHTE^ nm s) la4 Jn( PS

ia cisgn(z~ ,2nm 2 s~ nm J'-(jn'p/a)J'-(jn'p Ia)

+A^
2  n nm n nms

+$p ia n~sgn(z-z s)n nm pn

sgnz- 'n -( 'p/a) /a
as nm p n nm s

+A n .2 ) n(inW'p/a)
aP-7 Jn(jn~p/a) 

P

-z* --'- Jn(jrP/a)J,(jr'P /a) (C-6)
a fn
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